Sean McCauliff
Ames Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sean McCauliff.
Nature | 2011
Jack J. Lissauer; Daniel C. Fabrycky; Eric B. Ford; William J. Borucki; Francois Fressin; Geoffrey W. Marcy; Jerome A. Orosz; Jason F. Rowe; Guillermo Torres; William F. Welsh; Natalie M. Batalha; Stephen T. Bryson; Lars A. Buchhave; Douglas A. Caldwell; Joshua A. Carter; David Charbonneau; Jessie L. Christiansen; William D. Cochran; Jean-Michel Desert; Edward W. Dunham; Michael N. Fanelli; Jonathan J. Fortney; Thomas N. Gautier; John C. Geary; Ronald L. Gilliland; Michael R. Haas; Jennifer R. Hall; Matthew J. Holman; David G. Koch; David W. Latham
When an extrasolar planet passes in front of (transits) its star, its radius can be measured from the decrease in starlight and its orbital period from the time between transits. Multiple planets transiting the same star reveal much more: period ratios determine stability and dynamics, mutual gravitational interactions reflect planet masses and orbital shapes, and the fraction of transiting planets observed as multiples has implications for the planarity of planetary systems. But few stars have more than one known transiting planet, and none has more than three. Here we report Kepler spacecraft observations of a single Sun-like star, which we call Kepler-11, that reveal six transiting planets, five with orbital periods between 10 and 47 days and a sixth planet with a longer period. The five inner planets are among the smallest for which mass and size have both been measured, and these measurements imply substantial envelopes of light gases. The degree of coplanarity and proximity of the planetary orbits imply energy dissipation near the end of planet formation.
Science | 2011
Laurance R. Doyle; Joshua A. Carter; Daniel C. Fabrycky; Robert W. Slawson; Steve B. Howell; Joshua N. Winn; Jerome A. Orosz; Andrej Prˇsa; William F. Welsh; Samuel N. Quinn; David W. Latham; Guillermo Torres; Lars A. Buchhave; Geoffrey W. Marcy; Jonathan J. Fortney; Avi Shporer; Eric B. Ford; Jack J. Lissauer; Darin Ragozzine; Michael Rucker; Natalie M. Batalha; Jon M. Jenkins; William J. Borucki; David G. Koch; Christopher K. Middour; Jennifer R. Hall; Sean McCauliff; Michael N. Fanelli; Elisa V. Quintana; Matthew J. Holman
An exoplanet has been observed, comparable in size and mass to Saturn, that orbits a pair of stars. We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20 and 69% as massive as the Sun and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5° of a single plane, suggesting that the planet formed within a circumbinary disk.
The Astrophysical Journal | 2010
Jon M. Jenkins; Douglas A. Caldwell; Hema Chandrasekaran; Joseph D. Twicken; Stephen T. Bryson; Elisa V. Quintana; Bruce D. Clarke; Jie Li; Christopher Allen; Peter Tenenbaum; Hayley Wu; Todd C. Klaus; Christopher K. Middour; Miles T. Cote; Sean McCauliff; Forrest R. Girouard; Jay P. Gunter; Bill Wohler; Jeneen Sommers; Jennifer R. Hall; Akm Kamal Uddin; Michael S. Wu; Paresh Bhavsar; Jeffrey Edward van Cleve; David L. Pletcher; Jessie A. Dotson; Michael R. Haas; Ronald L. Gilliland; David G. Koch; William J. Borucki
The Kepler Mission Science Operations Center (SOC) performs several critical functions including managing the ~156,000 target stars, associated target tables, science data compression tables and parameters, as well as processing the raw photometric data downlinked from the spacecraft each month. The raw data are first calibrated at the pixel level to correct for bias, smear induced by a shutterless readout, and other detector and electronic effects. A background sky flux is estimated from ~4500 pixels on each of the 84 CCD readout channels, and simple aperture photometry is performed on an optimal aperture for each star. Ancillary engineering data and diagnostic information extracted from the science data are used to remove systematic errors in the flux time series that are correlated with these data prior to searching for signatures of transiting planets with a wavelet-based, adaptive matched filter. Stars with signatures exceeding 7.1? are subjected to a suite of statistical tests including an examination of each stars centroid motion to reject false positives caused by background eclipsing binaries. Physical parameters for each planetary candidate are fitted to the transit signature, and signatures of additional transiting planets are sought in the residual light curve. The pipeline is operational, finding planetary signatures and providing robust eliminations of false positives.
The Astrophysical Journal | 2010
Ronald L. Gilliland; Jon M. Jenkins; William J. Borucki; Stephen T. Bryson; Douglas A. Caldwell; Bruce D. Clarke; Jessie L. Dotson; Michael R. Haas; Jennifer R. Hall; Todd C. Klaus; David G. Koch; Sean McCauliff; Elisa V. Quintana; Joseph D. Twicken; Jeffrey Edward van Cleve
The Kepler Mission offers two options for observations -- either Long Cadence (LC) used for the bulk of core mission science, or Short Cadence (SC) which is used for applications such as asteroseismology of solar-like stars and transit timing measurements of exoplanets where the 1-minute sampling is critical. We discuss the characteristics of SC data obtained in the 33.5-day long Quarter 1 (Q1) observations with Kepler which completed on 15 June 2009. The truly excellent time series precisions are nearly Poisson limited at 11th magnitude providing per-point measurement errors of 200 parts-per-million per minute. For extremely saturated stars near 7th magnitude precisions of 40 ppm are reached, while for background limited measurements at 17th magnitude precisions of 7 mmag are maintained. We note the presence of two additive artifacts, one that generates regularly spaced peaks in frequency, and one that involves additive offsets in the time domain inversely proportional to stellar brightness. The difference between LC and SC sampling is illustrated for transit observations of TrES-2.
Publications of the Astronomical Society of the Pacific | 2012
Martin C. Stumpe; Jeffrey C. Smith; Jeffrey Edward van Cleve; Joseph D. Twicken; Michael N. Fanelli; Forrest R. Girouard; Jon M. Jenkins; Jeffery J. Kolodziejczak; Sean McCauliff; Robert L. Morris
Kepler provides light curves of 156,000 stars with unprecedented precision. However, the raw data as they come from the spacecraft contain significant systematic and stochastic errors. These errors, which include discontinuities, systematic trends, and outliers, obscure the astrophysical signals in the light curves. To correct these errors is the task of the Presearch Data Conditioning (PDC) module of the Kepler data analysis pipeline. The original version of PDC in Kepler did not meet the extremely high performance requirements for the detection of miniscule planet transits or highly accurate analysis of stellar activity and rotation. One particular deficiency was that astrophysical features were often removed as a side effect of the removal of errors. In this article we introduce the completely new and significantly improved version of PDC which was implemented in Kepler SOC version 8.0. This new PDC version, which utilizes a Bayesian approach for removal of systematics, reliably corrects errors in the light curves while at the same time preserving planet transits and other astrophysically interesting signals. We describe the architecture and the algorithms of this new PDC module, show typical errors encountered in Kepler data, and illustrate the corrections using real light curve examples.
Monthly Notices of the Royal Astronomical Society | 2012
A. Miglio; K. Brogaard; D. Stello; W. J. Chaplin; F. D’Antona; Josefina Montalban; Sarbani Basu; A. Bressan; F. Grundahl; Marc H. Pinsonneault; Aldo M. Serenelli; Y. Elsworth; S. Hekker; T. Kallinger; B. Mosser; P. Ventura; Alfio Bonanno; A. Noels; V. Silva Aguirre; R. Szabó; Jie Li; Sean McCauliff; Christopher K. Middour; Hans Kjeldsen
Mass-loss of red giant branch (RGB) stars is still poorly determined, despite its crucial role in the chemical enrichment of galaxies. Thanks to the recent detection of solar-like oscillations in G–K giants in open clusters with Kepler, we can now directly determine stellar masses for a statistically significant sample of stars in the old open clusters NGC 6791 and 6819. The aim of this work is to constrain the integrated RGB mass-loss by comparing the average mass of stars in the red clump (RC) with that of stars in the low-luminosity portion of the RGB [i.e. stars with L L(RC)]. Stellar masses were determined by combining the available seismic parameters νmax and �ν with additional photometric constraints and with independent distance estimates. We measured the masses of 40 stars on the RGB and 19 in the RC of the old metal-rich cluster NGC 6791. We find that the difference between the average mass of RGB and RC stars is small, but significant [� M = 0.09 ± 0.03 (random) ±0.04 (systematic)
Monthly Notices of the Royal Astronomical Society | 2012
Jason H. Steffen; Daniel C. Fabrycky; Eric B. Ford; Joshua A. Carter; J.-M. Desert; Francois Fressin; Matthew J. Holman; Jack J. Lissauer; Althea V. Moorhead; Jason F. Rowe; Darin Ragozzine; William F. Welsh; Natalie M. Batalha; William J. Borucki; Lars A. Buchhave; Steve Bryson; Douglas A. Caldwell; David Charbonneau; David R. Ciardi; William D. Cochran; Michael Endl; Mark E. Everett; Thomas N. Gautier; R. L. Gilliland; Forrest R. Girouard; Jon M. Jenkins; Elliott P. Horch; Steve B. Howell; Howard Isaacson; Todd C. Klaus
We present a method to confirm the planetary nature of objects in systems with multiple transiting exoplanet candidates. This method involves a Fourier-domain analysis of the deviations in the transit times from a constant period that result from dynamical interactions within the system. The combination of observed anticorrelations in the transit times and mass constraints from dynamical stability allow us to claim the discovery of four planetary systems, Kepler-25, Kepler-26, Kepler-27 and Kepler-28, containing eight planets and one additional planet candidate.
The Astrophysical Journal | 2010
Jon M. Jenkins; William J. Borucki; David G. Koch; Geoffrey W. Marcy; William D. Cochran; William F. Welsh; Gibor Basri; Natalie M. Batalha; Lars A. Buchhave; Timothy M. Brown; Douglas A. Caldwell; Edward W. Dunham; Michael Endl; Debra A. Fischer; Thomas N. Gautier; John C. Geary; Ronald L. Gilliland; Steve B. Howell; Howard Isaacson; John Asher Johnson; David W. Latham; Jack J. Lissauer; David G. Monet; Jason F. Rowe; Dimitar D. Sasselov; Andrew W. Howard; Phillip J. MacQueen; Jerome A. Orosz; Hema Chandrasekaran; Joseph D. Twicken
We report on the discovery and the Rossiter-McLaughlin (R-M) effect of Kepler-8b, a transiting planet identified by the NASA Kepler Mission. Kepler photometry and Keck-HIRES radial velocities yield the radius and mass of the planet around this F8IV subgiant host star. The planet has a radius R_P = 1.419 R_J and a mass M_P = 0.60 M_J, yielding a density of 0.26 g cm^(–3), one of the lowest planetary densities known. The orbital period is P = 3.523 days and the orbital semimajor axis is 0.0483^(+0.0006) _(–0.0012) AU. The star has a large rotational vsin i of 10.5 ± 0.7 km s^(–1) and is relatively faint (V ≈ 13.89 mag); both properties are deleterious to precise Doppler measurements. The velocities are indeed noisy, with scatter of 30 m s^(–1), but exhibit a period and phase that are consistent with those implied by transit photometry. We securely detect the R-M effect, confirming the planets existence and establishing its orbit as prograde. We measure an inclination between the projected planetary orbital axis and the projected stellar rotation axis of λ = –26o.4 ± 10o.1, indicating a significant inclination of the planetary orbit. R-M measurements of a large sample of transiting planets from Kepler will provide a statistically robust measure of the true distribution of spin-orbit orientations for hot Jupiters around F and early G stars.
The Astrophysical Journal | 2011
Sarah Ballard; Daniel C. Fabrycky; Francois Fressin; David Charbonneau; J.-M. Desert; Guillermo Torres; Geoffrey W. Marcy; Christopher J. Burke; Howard Isaacson; Christopher E. Henze; Jason H. Steffen; David R. Ciardi; Steven B. Howell; William D. Cochran; Michael Endl; Stephen T. Bryson; Jason F. Rowe; Matthew J. Holman; Jack J. Lissauer; Jon M. Jenkins; Martin Still; Eric B. Ford; Jessie L. Christiansen; Christopher K. Middour; Michael R. Haas; Jie Li; Jennifer R. Hall; Sean McCauliff; Natalie M. Batalha; David G. Koch
We present the discovery of the Kepler-19 planetary system, which we first identified from a 9.3 day periodic transit signal in the Kepler photometry. From high-resolution spectroscopy of the star, we find a stellar effective temperature T_(eff) = 5541 ± 60 K, a metallicity [Fe/H] = –0.13 ± 0.06, and a surface gravity log(g) = 4.59 ± 0.10. We combine the estimate of T_(eff) and [Fe/H] with an estimate of the stellar density derived from the photometric light curve to deduce a stellar mass of M_*= 0.936 ± 0.040 M_☉ and a stellar radius of R_* = 0.850 ± 0.018 R_☉ (these errors do not include uncertainties in the stellar models). We rule out the possibility that the transits result from an astrophysical false positive by first identifying the subset of stellar blends that reproduce the precise shape of the light curve. Using the additional constraints from the measured color of the system, the absence of a secondary source in the high-resolution spectrum, and the absence of a secondary source in the adaptive optics imaging, we conclude that the planetary scenario is more than three orders of magnitude more likely than a blend. The blend scenario is independently disfavored by the achromaticity of the transit: we measure a transit depth with Spitzer at 4.5 μm of 547^(+113)_(–110) ppm, consistent with the depth measured in the Kepler optical bandpass of 567 ± 6 ppm (corrected for stellar limb darkening). We determine a physical radius of the planet Kepler-19b of R_p = 2.209 ± 0.048 R_⊕; the uncertainty is dominated by uncertainty in the stellar parameters. From radial velocity observations of the star, we find an upper limit on the planet mass of 20.3 M_⊕, corresponding to a maximum density of 10.4 g cm^(–3). We report a significant sinusoidal deviation of the transit times from a predicted linear ephemeris, which we conclude is due to an additional perturbing body in the system. We cannot uniquely determine the orbital parameters of the perturber, as various dynamical mechanisms match the amplitude, period, and shape of the transit timing signal and satisfy the host stars radial velocity limits. However, the perturber in these mechanisms has a period ≾ 160 days and mass ≾ 6 M_(Jup), confirming its planetary nature as Kepler-19c. We place limits on the presence of transits of Kepler-19c in the available Kepler data.
The Astrophysical Journal | 2012
Eric B. Ford; Daniel C. Fabrycky; Jason H. Steffen; Joshua A. Carter; Francois Fressin; Matthew J. Holman; Jack J. Lissauer; Althea V. Moorhead; Robert C. Morehead; Darin Ragozzine; Jason F. Rowe; William F. Welsh; Christopher Allen; Natalie M. Batalha; William J. Borucki; Stephen T. Bryson; Lars A. Buchhave; Christopher J. Burke; Douglas A. Caldwell; David Charbonneau; Bruce D. Clarke; William D. Cochran; J.-M. Desert; Michael Endl; Mark E. Everett; Debra A. Fischer; Thomas N. Gautier; R. L. Gilliland; Jon M. Jenkins; Michael R. Haas
We present a new method for confirming transiting planets based on the combination of transit timing variations (TTVs) and dynamical stability. Correlated TTVs provide evidence that the pair of bodies is in the same physical system. Orbital stability provides upper limits for the masses of the transiting companions that are in the planetary regime. This paper describes a non-parametric technique for quantifying the statistical significance of TTVs based on the correlation of two TTV data sets. We apply this method to an analysis of the TTVs of two stars with multiple transiting planet candidates identified by Kepler. We confirm four transiting planets in two multiple-planet systems based on their TTVs and the constraints imposed by dynamical stability. An additional three candidates in these same systems are not confirmed as planets, but are likely to be validated as real planets once further observations and analyses are possible. If all were confirmed, these systems would be near 4:6:9 and 2:4:6:9 period commensurabilities. Our results demonstrate that TTVs provide a powerful tool for confirming transiting planets, including low-mass planets and planets around faint stars for which Doppler follow-up is not practical with existing facilities. Continued Kepler observations will dramatically improve the constraints on the planet masses and orbits and provide sensitivity for detecting additional non-transiting planets. If Kepler observations were extended to eight years, then a similar analysis could likely confirm systems with multiple closely spaced, small transiting planets in or near the habitable zone of solar-type stars.