Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sean P. Jungbluth is active.

Publication


Featured researches published by Sean P. Jungbluth.


Nature Biotechnology | 2018

Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea

Robert M. Bowers; Nikos C. Kyrpides; Ramunas Stepanauskas; Miranda Harmon-Smith; Devin Fr Doud; T. B.K. Reddy; Frederik Schulz; Jessica Jarett; Adam R. Rivers; Emiley A. Eloe-Fadrosh; Susannah G. Tringe; Natalia Ivanova; Alex Copeland; Alicia Clum; Eric D. Becraft; Rex R. Malmstrom; Bruce W. Birren; Mircea Podar; Peer Bork; George M. Weinstock; George M Garrity; Jeremy A. Dodsworth; Shibu Yooseph; Granger Sutton; Frank Oliver Gloeckner; Jack A. Gilbert; William C. Nelson; Steven J. Hallam; Sean P. Jungbluth; Thijs J. G. Ettema

We present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a Metagenome-Assembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Gene Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.


Scientific Data | 2017

Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids

Sean P. Jungbluth; Jan P. Amend; Michael S. Rappé

The global deep subsurface biosphere is one of the largest reservoirs for microbial life on our planet. This study takes advantage of new sampling technologies and couples them with improvements to DNA sequencing and associated informatics tools to reconstruct the genomes of uncultivated Bacteria and Archaea from fluids collected deep within the Juan de Fuca Ridge subseafloor. Here, we generated two metagenomes from borehole observatories located 311 meters apart and, using binning tools, retrieved 98 genomes from metagenomes (GFMs). Of the GFMs, 31 were estimated to be >90% complete, while an additional 17 were >70% complete. Phylogenomic analysis revealed 53 bacterial and 45 archaeal GFMs, of which nearly all were distantly related to known cultivated isolates. In the GFMs, abundant Bacteria included Chloroflexi, Nitrospirae, Acetothermia (OP1), EM3, Aminicenantes (OP8), Gammaproteobacteria, and Deltaproteobacteria, while abundant Archaea included Archaeoglobi, Bathyarchaeota (MCG), and Marine Benthic Group E (MBG-E). These data are the first GFMs reconstructed from the deep basaltic subseafloor biosphere, and provide a dataset available for further interrogation.


The ISME Journal | 2018

Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle

Karthik Anantharaman; Bela Hausmann; Sean P. Jungbluth; Rose S. Kantor; Adi Lavy; Lesley A. Warren; Michael S. Rappé; Michael Pester; Alexander Loy; Brian C. Thomas; Jillian F. Banfield

A critical step in the biogeochemical cycle of sulfur on Earth is microbial sulfate reduction, yet organisms from relatively few lineages have been implicated in this process. Previous studies using functional marker genes have detected abundant, novel dissimilatory sulfite reductases (DsrAB) that could confer the capacity for microbial sulfite/sulfate reduction but were not affiliated with known organisms. Thus, the identity of a significant fraction of sulfate/sulfite-reducing microbes has remained elusive. Here we report the discovery of the capacity for sulfate/sulfite reduction in the genomes of organisms from 13 bacterial and archaeal phyla, thereby more than doubling the number of microbial phyla associated with this process. Eight of the 13 newly identified groups are candidate phyla that lack isolated representatives, a finding only possible given genomes from metagenomes. Organisms from Verrucomicrobia and two candidate phyla, Candidatus Rokubacteria and Candidatus Hydrothermarchaeota, contain some of the earliest evolved dsrAB genes. The capacity for sulfite reduction has been laterally transferred in multiple events within some phyla, and a key gene potentially capable of modulating sulfur metabolism in associated cells has been acquired by putatively symbiotic bacteria. We conclude that current functional predictions based on phylogeny significantly underestimate the extent of sulfate/sulfite reduction across Earth’s ecosystems. Understanding the prevalence of this capacity is integral to interpreting the carbon cycle because sulfate reduction is often coupled to turnover of buried organic carbon. Our findings expand the diversity of microbial groups associated with sulfur transformations in the environment and motivate revision of biogeochemical process models based on microbial community composition.


PeerJ | 2017

Genomic comparisons of a bacterial lineage that inhabits both marine and terrestrial deep subsurface systems

Sean P. Jungbluth; Tijana Glavina del Rio; Susannah G. Tringe; Ramunas Stepanauskas; Michael S. Rappé

It is generally accepted that diverse, poorly characterized microorganisms reside deep within Earth’s crust. One such lineage of deep subsurface-dwelling bacteria is an uncultivated member of the Firmicutes phylum that can dominate molecular surveys from both marine and continental rock fracture fluids, sometimes forming the sole member of a single-species microbiome. Here, we reconstructed a genome from basalt-hosted fluids of the deep subseafloor along the eastern Juan de Fuca Ridge flank and used a phylogenomic analysis to show that, despite vast differences in geographic origin and habitat, it forms a monophyletic clade with the terrestrial deep subsurface genome of “Candidatus Desulforudis audaxviator” MP104C. While a limited number of differences were observed between the marine genome of “Candidatus Desulfopertinax cowenii” modA32 and its terrestrial relative that may be of potential adaptive importance, here it is revealed that the two are remarkably similar thermophiles possessing the genetic capacity for motility, sporulation, hydrogenotrophy, chemoorganotrophy, dissimilatory sulfate reduction, and the ability to fix inorganic carbon via the Wood-Ljungdahl pathway for chemoautotrophic growth. Our results provide insights into the genetic repertoire within marine and terrestrial members of a bacterial lineage that is widespread in the global deep subsurface biosphere, and provides a natural means to investigate adaptations specific to these two environments.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Opinion: Telepresence is a potentially transformative tool for field science

Jeffrey Marlow; Chiara Borrelli; Sean P. Jungbluth; Colleen L. Hoffman; Jennifer Marlow; Peter R. Girguis; Adam Skarke; Donna K. Blackman; Dan Fornari; Adam Soule; Cindy Lee Van Dover; Laura E. Bagge; Roman A. Barco; Bridgit Boulahanais; Kaitlin Bowman; Mercer Brugler; Stephanie L. Bush; Anni Djurhuus; Julianne Fernandez; Robinson Fulweiler; Sean Jungbluth; Joanna D. Kinsey; Kevin M. Kocot; Doreen McVeigh; Michael Navarro; Amanda Netburn; Alexis L. Pasulka; Katrina I. Twing; Amy Wagner; Joe Zambon

Field expeditions have long played a critical role in advancing our understanding of the natural world. From the voyage of the Beagle to the HMS Challenger Expedition and the Apollo Moon landings, researchers have visited remote locations to collect samples and in situ data before returning to the laboratory for further analyses.


Geomicrobiology Journal | 2018

Cryogenic minerals in Hawaiian lava tubes: A geochemical and microbiological exploration

Kimberly B. Teehera; Sean P. Jungbluth; Bogdan P. Onac; Tayro E. Acosta-Maeda; Eric Hellebrand; Anupam K. Misra; Andreas Pflitsch; Michael S. Rappé; Stephen M. Smith; Myriam Telus; Norbert Schorghofer

ABSTRACT The Mauna Loa volcano, on the Island of Hawaii, has numerous young lava tubes. Among them, two at high altitudes are known to contain ice year-round: Mauna Loa Icecave (MLIC) and the Arsia Cave. These unusual caves harbor cold, humid, dark, and biologically restricted environments. Secondary minerals and ice were sampled from both caves to explore their geochemical and microbiological characteristics. The minerals sampled from the deep parts of the caves, where near freezing temperatures prevail, are all multi-phase and consist mainly of secondary amorphous silica SiO2, cryptocrystalline calcite CaCO3, and gypsum CaSO4·2H2O. Based on carbon and oxygen stable isotope ratios, all sampled calcite is cryogenic. The isotopic composition of falls on the global meteoric line, indicating that little evaporation has occurred. The microbial diversity of a silica and calcite deposit in the MLIC and from ice pond water in the Arsia Cave was explored by analysis of ∼50,000 small subunit ribosomal RNA gene fragments via amplicon sequencing. Analyses reveal that the Hawaiian ice caves harbor unique microbial diversity distinct from other environments, including cave environments, in Hawaii and worldwide. Actinobacteria and Proteobacteria were the most abundant microbial phyla detected, which is largely consistent with studies of other oligotrophic cave environments. The cold, isolated, oligotrophic basaltic lava cave environment in Hawaii provides a unique opportunity to understand microbial biogeography not only on Earth but also on other planets.


bioRxiv | 2017

Dramatic expansion of microbial groups that shape the global sulfur cycle

Karthik Anantharaman; Sean P. Jungbluth; Rose S. Kantor; Adi Lavy; Lesley A. Warren; Michael S. Rappé; Brian C. Thomas; Jillian F. Banfield

The biogeochemical cycle of sulfur on Earth is driven by microbial sulfate reduction, yet organisms from relatively few lineages have been implicated in this process. Recent studies using functional marker genes have detected abundant, novel dissimilatory sulfite reductases that confer the capacity for microbial sulfate reduction and could do not be affiliated with known organisms. Thus, the identity of a significant fraction of sulfate reducing microbes has remained elusive. Here we report the discovery of the capacity for sulfate reduction in the genomes of organisms from twelve bacterial and archaeal phyla, thereby doubling the number of microbial phyla associated with this process. Eight of the twelve newly identified groups are candidate phyla that lack isolated representatives, a finding only possible given genomes from metagenomes. Two candidate phyla, Candidatus Rokubacteria and Candidatus Hydrothermarchaeota contain the earliest evolved genes. The capacity for sulfate reduction has been laterally transferred in multiple events within some phyla, and a key gene potentially capable of switching sulfur oxidation to sulfate reduction in associated cells has been acquired by putatively symbiotic bacteria. We conclude that functional predictions based on phylogeny will significantly underestimate the extent of sulfate reduction across Earth’s ecosystems. Understanding the prevalence of this capacity is integral to interpreting the carbon cycle because sulfate reduction is often coupled to turnover of buried organic carbon. Our findings expand the diversity of microbial groups associated with sulfur transformations in the environment and motivate revision of biogeochemical process models based on microbial community composition.


bioRxiv | 2018

Divergent methyl-coenzyme M reductase genes in a deep-subseafloor Archaeoglobi

Joel A. Boyd; Sean P. Jungbluth; Andy O. Leu; Paul N. Evans; Ben J. Woodcroft; Grayson L. Chadwick; Victoria J. Orphan; Jan P. Amend; Michael S. Rappé; Gene W. Tyson

The methyl-coenzyme M reductase (MCR) complex is a key enzyme in archaeal methane generation and has recently been proposed to also be involved in the oxidation of short-chain hydrocarbons including methane, butane and potentially propane. The number of archaeal clades encoding the MCR complex continues to grow, suggesting that this complex was inherited from an ancient ancestor, or has undergone extensive horizontal gene transfer. Expanding the representation of MCR-encoding lineages through metagenomic approaches will help resolve the evolutionary history of this complex. Here, a near-complete Archaeoglobi metagenome-assembled genome (MAG; rG16) was recovered from the deep subseafloor along the Juan de Fuca Ridge flank that encodes two divergent McrABG operons similar to those found in Candidatus Bathyarchaeota and Candidatus Syntrophoarchaeum MAGs. rG16 is basal to members of the class Archaeoglobi, and encodes the genes for β-oxidation, potentially allowing an alkanotrophic metabolism similar to that proposed for Ca. Syntrophoarchaeum. rG16 also encodes a respiratory electron transport chain that can potentially utilize nitrate, iron, and sulfur compounds as electron acceptors. As the first Archaeoglobi with the MCR complex, rG16 extends our understanding of the evolution and distribution of novel MCR encoding lineages among the Archaea.


Nucleic Acids Research | 2018

IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes.

I-Min A. Chen; Ken Chu; Krishna Palaniappan; Manoj Pillay; Anna Ratner; Jinghua Huang; Marcel Huntemann; Neha Varghese; James R White; Rekha Seshadri; Tatyana Smirnova; Edward Kirton; Sean P. Jungbluth; Tanja Woyke; Emiley A. Eloe-Fadrosh; Natalia Ivanova; Nikos C. Kyrpides

Abstract The Integrated Microbial Genomes & Microbiomes system v.5.0 (IMG/M: https://img.jgi.doe.gov/m/) contains annotated datasets categorized into: archaea, bacteria, eukarya, plasmids, viruses, genome fragments, metagenomes, cell enrichments, single particle sorts, and metatranscriptomes. Source datasets include those generated by the DOE’s Joint Genome Institute (JGI), submitted by external scientists, or collected from public sequence data archives such as NCBI. All submissions are typically processed through the IMG annotation pipeline and then loaded into the IMG data warehouse. IMG’s web user interface provides a variety of analytical and visualization tools for comparative analysis of isolate genomes and metagenomes in IMG. IMG/M allows open access to all public genomes in the IMG data warehouse, while its expert review (ER) system (IMG/MER: https://img.jgi.doe.gov/mer/) allows registered users to access their private genomes and to store their private datasets in workspace for sharing and for further analysis. IMG/M data content has grown by 60% since the last report published in the 2017 NAR Database Issue. IMG/M v.5.0 has a new and more powerful genome search feature, new statistical tools, and supports metagenome binning.


Archive | 2018

Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea (vol 35, pg 725, 2017)

Robert M. Bowers; Nikos C. Kyrpides; Ramunas Stepanauskas; Miranda Harmon-Smith; Devin Fr Doud; Tbk Reddy; Frederik Schulz; Jessica Jarett; Adam R. Rivers; Emiley A. Eloe-Fadrosh; Susannah G. Tringe; Natalia Ivanova; Alex Copeland; Alicia Clum; Eric D. Becraft; Rex R. Malmstrom; Bruce W. Birren; Mircea Podar; Peer Bork; George M. Weinstock; George M Garrity; Jeremy A. Dodsworth; Shibu Yooseph; Granger Sutton; Frank Oliver Glöckner; Jack A. Gilbert; William C. Nelson; Steven J. Hallam; Sean P. Jungbluth; Tjg Ettema

Nat. Biotechnol. 35, 725–731 (2017); published online 8 August 2017; corrected after print 29 November 2017; corrected after print 7 December 2017 In the version of this article initially published, the following acknowledgment was omitted: A.L. was supported by the Russian Science Foundation (grantnumber 14-50-00069).

Collaboration


Dive into the Sean P. Jungbluth's collaboration.

Top Co-Authors

Avatar

Michael S. Rappé

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Jan P. Amend

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natalia Ivanova

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramunas Stepanauskas

Bigelow Laboratory For Ocean Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Skarke

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Adi Lavy

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge