Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sean W. Bailey is active.

Publication


Featured researches published by Sean W. Bailey.


Applied Optics | 2007

Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry

Bryan A. Franz; Sean W. Bailey; P. Jeremy Werdell; Charles R. McClain

The retrieval of ocean color radiometry from space-based sensors requires on-orbit vicarious calibration to achieve the level of accuracy desired for quantitative oceanographic applications. The approach developed by the NASA Ocean Biology Processing Group (OBPG) adjusts the integrated instrument and atmospheric correction system to retrieve normalized water-leaving radiances that are in agreement with ground truth measurements. The method is independent of the satellite sensor or the source of the ground truth data, but it is specific to the atmospheric correction algorithm. The OBPG vicarious calibration approach is described in detail, and results are presented for the operational calibration of SeaWiFS using data from the Marine Optical Buoy (MOBY) and observations of clear-water sites in the South Pacific and southern Indian Ocean. It is shown that the vicarious calibration allows SeaWiFS to reproduce the MOBY radiances and achieve good agreement with radiometric and chlorophyll a measurements from independent in situ sources. We also find that the derived vicarious gains show no significant temporal or geometric dependencies, and that the mission-average calibration reaches stability after approximately 20-40 high-quality calibration samples. Finally, we demonstrate that the performance of the vicariously calibrated retrieval system is relatively insensitive to the assumptions inherent in our approach.


Optics Express | 2010

Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing

Sean W. Bailey; Bryan A. Franz; P. Jeremy Werdell

The atmospheric correction algorithm employed by the NASA Ocean Biology Processing Group requires an assumption of negligible water-leaving reflectance in the near-infrared region of the spectrum. For waters where this assumption is not valid, an optical model is used to estimate near-infrared water-leaving reflectance. We describe this optical model as implemented for the sixth reprocessing of the SeaWiFS mission-long time-series (September 2009). Application of the optical model resulted in significant reductions in the number of negative water-leaving reflectance retrievals in turbid and optically complex waters, and improved agreement with in situ chlorophyll-a observations. The incidence of negative water-leaving reflectance retrievals at 412 nm was reduced by 40%, while negative reflectance at 490 nm was nearly eliminated.


Applied Optics | 2013

Generalized ocean color inversion model for retrieving marine inherent optical properties

P. Jeremy Werdell; Bryan A. Franz; Sean W. Bailey; Gene C. Feldman; Emmanuel Boss; Vittorio E. Brando; Mark Dowell; Takafumi Hirata; Samantha Lavender; Zhongping Lee; Hubert Loisel; Stephane Maritorena; Frédéric Mélin; Timothy S. Moore; Timothy J. Smyth; David Antoine; Emmanuel Devred; O. Hembise; Antoine Mangin

Ocean color measured from satellites provides daily, global estimates of marine inherent optical properties (IOPs). Semi-analytical algorithms (SAAs) provide one mechanism for inverting the color of the water observed by the satellite into IOPs. While numerous SAAs exist, most are similarly constructed and few are appropriately parameterized for all water masses for all seasons. To initiate community-wide discussion of these limitations, NASA organized two workshops that deconstructed SAAs to identify similarities and uniqueness and to progress toward consensus on a unified SAA. This effort resulted in the development of the generalized IOP (GIOP) model software that allows for the construction of different SAAs at runtime by selection from an assortment of model parameterizations. As such, GIOP permits isolation and evaluation of specific modeling assumptions, construction of SAAs, development of regionally tuned SAAs, and execution of ensemble inversion modeling. Working groups associated with the workshops proposed a preliminary default configuration for GIOP (GIOP-DC), with alternative model parameterizations and features defined for subsequent evaluation. In this paper, we: (1) describe the theoretical basis of GIOP; (2) present GIOP-DC and verify its comparable performance to other popular SAAs using both in situ and synthetic data sets; and, (3) quantify the sensitivities of their output to their parameterization. We use the latter to develop a hierarchical sensitivity of SAAs to various model parameterizations, to identify components of SAAs that merit focus in future research, and to provide material for discussion on algorithm uncertainties and future emsemble applications.


Applied Optics | 2001

Calibration of SeaWiFS. II. Vicarious techniques.

Robert E. Eplee; Wayne D. Robinson; Sean W. Bailey; Dennis K. Clark; P. Jeremy Werdell; Menghua Wang; Robert A. Barnes; Charles R. McClain

We present an overview of the vicarious calibration of the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS). This program has three components: the calibration of the near-infrared bands so that the atmospheric correction algorithm retrieves the optical properties of maritime aerosols in the open ocean; the calibration of the visible bands against in-water measurements from the Marine Optical Buoy (MOBY); and a calibration-verification program that uses comparisons between SeaWiFS retrievals and globally distributed in situ measurements of water-leaving radiances. This paper describes the procedures as implemented for the third reprocessing of the SeaWiFS global mission data set. The uncertainty in the near-infrared vicarious gain is 0.9%. The uncertainties in the visible-band vicarious gains are 0.3%, corresponding to uncertainties in the water-leaving radiances of approximately 3%. The means of the SeaWiFS/in situ matchup ratios for water-leaving radiances are typically within 5% of unity in Case 1 waters, while chlorophyll a ratios are within 1% of unity. SeaWiFS is the first ocean-color mission to use an extensive and ongoing prelaunch and postlaunch calibration program, and the matchup results demonstrate the benefits of a comprehensive approach.


Eos, Transactions American Geophysical Union | 2003

Unique data repository facilitates ocean color satellite validation

P. Jeremy Werdell; Sean W. Bailey; Giulietta S. Fargion; Christophe Pietras; Kirk Knobelspiesse; Gene C. Feldman; Charles R. McClain

The oceans play a critical role in the Earths climate, but unfortunately the extent of this role is only partially understood. One major obstacle is the difficulty associated with making high-quality globally distributed observations, a feat that is nearly impossible using only ships and other ocean-based platforms. The data collected by satellite-borne ocean color instruments, however, provide environmental scientists a synoptic look at the productivity and variability of the Earths oceans and atmosphere, respectively on high-resolution temporal and spatial scales. Three such instruments, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) onboard ORBIMAGEs OrbView-2 satellite, and two Moderate Resolution Imaging Spectroradiometers (MODIS) onboard the National Aeronautic and Space Administrations (NASA) Terra and Aqua satellites, have been in continuous operation since September 1997, February 2000, and June 2002, respectively. To facilitate the assembly of a suitably accurate data set for climate research, members of the NASA Sensor Inter-comparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project and SeaWiFS Project Offices devote significant attention to the calibration and validation of these and other ocean color instruments. This article briefly presents results from the SIMBIOS and SeaWiFS Project Offices (SSPO) satellite ocean color validation activities and describes the SeaWiFS Bio-optical Archive and Storage System (SeaBASS),a state-of-the-art system for archiving, cataloging, and distributing the in situ data used in these activities.


Proceedings of SPIE | 2005

The continuity of ocean color measurements from SeaWiFS to MODIS

Bryan A. Franz; P. Jeremy Werdell; Gerhard Meister; Sean W. Bailey; Robert E. Eplee; Gene C. Feldman; Ewa J. Kwiatkowska; Charles R. McClain; Frederick S. Patt; Donna Thomas

The Ocean Biology Processing Group (OBPG) at NASAs Goddard Space Flight Center is responsible for the processing and validation of oceanic optical property retrievals from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and the Moderate Resolution Imaging Spectroradiometer (MODIS). A major goal of this activity is the production of a continuous ocean color time-series spanning the mission life of these sensors from September 1997 to the present time. This paper presents an overview of the calibration and validation strategy employed to optimize and verify sensor performance for retrieval of upwelling radiances just above the sea surface. Substantial focus is given to the comparison of results over the common mission lifespan of SeaWiFS and the MODIS flying on the Aqua platform, covering the period from July 2002 through December 2004. It will be shown that, through consistent application of calibration and processing methodologies, a continuous ocean color time-series can be produced from two different spaceborne sensors.


Applied Optics | 2008

Sources and assumptions for the vicarious calibration of ocean color satellite observations

Sean W. Bailey; Stanford B. Hooker; David Antoine; Bryan A. Franz; P. Jeremy Werdell

Spaceborne ocean color sensors require vicarious calibration to sea-truth data to achieve accurate water-leaving radiance retrievals. The assumed requirements of an in situ data set necessary to achieve accurate vicarious calibration were set forth in a series of papers and reports developed nearly a decade ago, which were embodied in the development and site location of the Marine Optical BuoY (MOBY). Since that time, NASA has successfully used data collected by MOBY as the sole source of sea-truth data for vicarious calibration of the Sea-viewing Wide field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer instruments. In this paper, we make use of the 10-year, global time series of SeaWiFS measurements to test the sensitivity of vicarious calibration to the assumptions inherent in the in situ requirements (e.g., very low chlorophyll waters, hyperspectral measurements). Our study utilized field measurements from a variety of sources with sufficient diversity in data collection methods and geophysical variability to challenge those in situ restrictions. We found that some requirements could be relaxed without compromising the ability to vicariously calibrate to the level required for accurate water-leaving radiance retrievals from satellite-based sensors.


Eos, Transactions American Geophysical Union | 2000

SeaWiFS provides unique global aerosol optical property data

Menghua Wang; Sean W. Bailey; Charles R. McClain

Atmospheric aerosols directly influence radiative transfer in the atmosphere and hence change the radiance reflected to space. They also indirectly affect the radiation budget by providing cloud condensation nucleii that lead to cloud formation. Since 1981, the National Oceanic and Atmospheric Administration (NOAA) has routinely retrieved the aerosol optical thickness over the ocean with measurements from the Advanced Very High Resolution Radiometer (AVHRR) using a single wavelength algorithm [Rao et al., 1989]. Continuous efforts have been made in recent years to collect ground in situ measurements and remotely retrieve aerosol optical properties using air-and spaceborne sensors [King et al., 1999]. The primary goals of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) [Hooker et al., 1992], which was successfully launched on August 1, 1997, are to routinely measure global ocean color and generate ocean biooptical property products.


Journal of Applied Remote Sensing | 2015

Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS

Bryan A. Franz; Sean W. Bailey; Norman Kuring; P. Jeremy Werdell

Abstract. The Operational Land Imager (OLI) is a multispectral radiometer hosted on the recently launched Landsat8 satellite. OLI includes a suite of relatively narrow spectral bands at 30 m spatial resolution in the visible to shortwave infrared, which makes it a potential tool for ocean color radiometry: measurement of the reflected spectral radiance upwelling from beneath the ocean surface that carries information on the biogeochemical constituents of the upper ocean euphotic zone. To evaluate the potential of OLI to measure ocean color, processing support was implemented in Sea-viewing Wide Field-of-View Sensor (SeaWiFS) Data Analysis System (SeaDAS), which is an open-source software package distributed by NASA for processing, analysis, and display of ocean remote sensing measurements from a variety of spaceborne multispectral radiometers. Here we describe the implementation of OLI processing capabilities within SeaDAS, including support for various methods of atmospheric correction to remove the effects of atmospheric scattering and absorption and retrieve the spectral remote sensing reflectance (Rrs; sr−1). The quality of the retrieved Rrs imagery will be assessed, as will the derived water column constituents, such as the concentration of the phytoplankton pigment chlorophyll a.


Applied Optics | 2015

On-orbit calibration of the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite for ocean color applications

Robert E. Eplee; Kevin R. Turpie; Gerhard Meister; Frederick S. Patt; Bryan A. Franz; Sean W. Bailey

The NASA Ocean Biology Processing Group (OBPG) developed two independent calibrations of the Suomi National Polar-Orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) moderate resolution reflective solar bands using solar diffuser measurements and lunar observations, and implemented a combined solar- and lunar-based calibration to track temporal changes in radiometric response of the instrument. Differences between the solar and lunar data sets have been used to identify issues and verify improvements in each. Linearization of the counts-to-radiance conversion yields a more consistent calibration at low radiance levels. Correction of a recently identified error in the VIIRS solar unit vector coordinate frame has been incorporated into the solar data and diffuser screen transmission functions. Temporal trends in the solar diffuser stability monitor data have been evaluated and addressed. Fits to the solar calibration time series show mean residuals per band of 0.067%-0.17%. Periodic residuals in the VIIRS lunar data are confirmed to arise from a wavelength-dependent libration effect for the sub-spacecraft point in the output of the U.S. Geological Survey Robotic Lunar Observatory photometric model of the Moon. Temporal variations in the relative spectral responses for each band have been assessed, and significant impact on band M1 (412 nm) lunar data has been identified and rectified. Fits to the lunar calibration time series, incorporating sub-spacecraft point libration corrections, show mean residuals per band of 0.069%-0.20%. Lunar calibrations have been used to adjust the solar-derived radiometric corrections for bands M1, M3, and M4. After all corrections, the relative differences in the solar and lunar calibrations for bands M1-M7 are 0.093%-0.22%. The OBPG has achieved a radiometric stability for the VIIRS on-orbit calibration that is commensurate with those achieved for SeaWiFS and Aqua MODIS, supporting the incorporation of VIIRS data into the long-term NASA ocean color data record.

Collaboration


Dive into the Sean W. Bailey's collaboration.

Top Co-Authors

Avatar

Bryan A. Franz

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Jeremy Werdell

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Robert E. Eplee

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Frederick S. Patt

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Gerhard Meister

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Gene C. Feldman

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Wayne D. Robinson

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Giulietta S. Fargion

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Robert A. Barnes

Science Applications International Corporation

View shared research outputs
Researchain Logo
Decentralizing Knowledge