Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastian Haag is active.

Publication


Featured researches published by Sebastian Haag.


Proceedings of SPIE | 2015

Virtual commissioning of automated micro-optical assembly

Christian Schlette; Daniel Losch; Sebastian Haag; Daniel Zontar; Jürgen Roßmann; Christian Brecher

In this contribution, we present a novel approach to enable virtual commissioning for process developers in micro-optical assembly. Our approach aims at supporting micro-optics experts to effectively develop assisted or fully automated assembly solutions without detailed prior experience in programming while at the same time enabling them to easily implement their own libraries of expert schemes and algorithms for handling optical components. Virtual commissioning is enabled by a 3D simulation and visualization system in which the functionalities and properties of automated systems are modeled, simulated and controlled based on multi-agent systems. For process development, our approach supports event-, state- and time-based visual programming techniques for the agents and allows for their kinematic motion simulation in combination with looped-in simulation results for the optical components. First results have been achieved for simply switching the agents to command the real hardware setup after successful process implementation and validation in the virtual environment. We evaluated and adapted our system to meet the requirements set by industrial partners-- laser manufacturers as well as hardware suppliers of assembly platforms. The concept is applied to the automated assembly of optical components for optically pumped semiconductor lasers and positioning of optical components for beam-shaping


Proceedings of SPIE | 2013

Automated assembly of VECSEL components

Christian Brecher; N. Pyschny; Sebastian Haag; T. Mueller

Due to the architectural advantage of an external cavity architecture that enables the integration of additional elements into the cavity (e.g. for mode control, frequency conversion, wavelength tuning or passive mode-locking) VECSELs are a rapidly developing laser technology. Nevertheless they often have to compete with direct (edge) emitting laser diodes which can have significant cost advantages thanks to their rather simple structure and production processes. One way to compensate the economical disadvantages of VECSELs is to optimize each component in terms of quality and costs and to apply more efficient (batch) production processes. In this context, the paper presents recent process developments for the automated assembly of VECSELs using a new type of desktop assembly station with an ultra-precise micromanipulator. The core concept is to create a dedicated process development environment from which implemented processes can be transferred fluently to production equipment. By now two types of processes have been put into operation on the desktop assembly station: 1.) passive alignment of the pump optics implementing a camera-based alignment process, where the pump spot geometry and position on the semiconductor chip is analyzed and evaluated; 2.) active alignment of the end mirror based on output power measurements and optimization algorithms. In addition to the core concept and corresponding hardware and software developments, detailed results of both processes are presented explaining measurement setups as well as alignment strategies and results.


Proceedings of SPIE | 2015

Adjustable mounting device for high-volume production of beam-shaping systems for high-power diode lasers

Sebastian Haag; Henning Bernhardt; Olaf Rübenach; Tobias Haverkamp; Tobias Müller; Daniel Zontar; Christian Brecher

In many applications for high-power diode lasers, the production of beam-shaping and homogenizing optical systems experience rising volumes and dynamical market demands. The automation of assembly processes on flexible and reconfigurable machines can contribute to a more responsive and scalable production. The paper presents a flexible mounting device designed for the challenging assembly of side-tab based optical systems. It provides design elements for precisely referencing and fixating two optical elements in a well-defined geometric relation. Side tabs are presented to the machine allowing the application of glue and a rotating mechanism allows the attachment to the optical elements. The device can be adjusted to fit different form factors and it can be used in high-volume assembly machines. The paper shows the utilization of the device for a collimation module consisting of a fast-axis and a slow-axis collimation lens. Results regarding the repeatability and process capability of bonding side tab assemblies as well as estimates from 3D simulation for overall performance indicators achieved such as cycle time and throughput will be discussed.


international conference on intelligent robotics and applications | 2011

Flexible assembly robotics for self-optimizing production

Sebastian Haag; Nicolas Pyschny; Christian Brecher

This paper provides an overview of the research results on self-optimizing production systems. Self-optimization strategies developed for assembly systems will be presented focusing on the enhancement of flexibility of assembly processes through a holistic approach regarding product-process-interdependencies. Key elements of the research like automation-friendly product and process design as well as highly-flexible automation equipment and control will be pointed out. This paper then draws a conclusion from that work and derives future research topics for making self-optimizing assembly systems a technology ready to be transferred to industry. The authors identified cooperation technologies, sensor-integration and sensor-guidance as well as meta-level task specification as relevant enablers for self-optimization in assembly systems as they further increase flexibility, autonomy, and cognition --- the pre-requisites for self-optimization. Concept approaches will be described.


international conference on intelligent robotics and applications | 2011

Self-optimization as an enabler for flexible and reconfigurable assembly systems

Rainer Müller; Christian Brecher; Burkhard Corves; Martin Esser; Martin Riedel; Sebastian Haag; Matthias Vette

In the face of continuously increasing cost pressure, a wide range of product versions and shorter innovation cycles, the demand for more versatile assembly and handling systems is steadily growing. Co-operating robots represent a suitable approach for this purpose. However, reconfiguring a multi-device robot cell usually involves a certain programming effort and unfavorable down times. By integrating self-optimizing functions, the complex task of reconfiguration is substantially simplified in order to make economic use not only of the referenced co-operating robotic systems. Therefore, several self-optimizing functions for different stages of production have been developed and applied to various production tasks. The implemented functions comprise self-optimizing planning and commissioning as well as a self-optimizing joining process. Based on the experience gained from these examples, the self-optimizing functions will be similarly applicable to various cases with relatively small additional effort.


Proceedings of SPIE | 2015

Minimal-effort planning of active alignment processes for beam-shaping optics

Sebastian Haag; Matthias Schranner; Tobias Müller; Daniel Zontar; Christian Schlette; Daniel Losch; Christian Brecher; Jürgen Roßmann

In science and industry, the alignment of beam-shaping optics is usually a manual procedure. Many industrial applications utilizing beam-shaping optical systems require more scalable production solutions and therefore effort has been invested in research regarding the automation of optics assembly. In previous works, the authors and other researchers have proven the feasibility of automated alignment of beam-shaping optics such as collimation lenses or homogenization optics. Nevertheless, the planning efforts as well as additional knowledge from the fields of automation and control required for such alignment processes are immense. This paper presents a novel approach of planning active alignment processes of beam-shaping optics with the focus of minimizing the planning efforts for active alignment. The approach utilizes optical simulation and the genetic programming paradigm from computer science for automatically extracting features from a simulated data basis with a high correlation coefficient regarding the individual degrees of freedom of alignment. The strategy is capable of finding active alignment strategies that can be executed by an automated assembly system. The paper presents a tool making the algorithm available to end-users and it discusses the results of planning the active alignment of the well-known assembly of a fast-axis collimator. The paper concludes with an outlook on the transferability to other use cases such as application specific intensity distributions which will benefit from reduced planning efforts.


Proceedings of SPIE | 2014

Engineering of automated assembly of beam-shaping optics

Sebastian Haag; Volker Sinhoff; Tobias Müller; Christian Brecher

Beam-shaping is essential for any kind of laser application. Assembly technologies for beam-shaping subassemblies are subject to intense research and development activities and their technical feasibility has been proven in recent years while economic viability requires more efficient engineering tools for process planning and production ramp up of complex assembly tasks for micro-optical systems. The work presented in this paper aims for significant reduction of process development and production ramp up times for the automated assembly of micro-optical subassemblies for beam-collimation and beam-tilting. The approach proposed bridges the gap between the product development phase and the realization of automation control through integration of established software tools such as optics simulation and CAD modeling as well as through introduction of novel software tools and methods to efficiently describe active alignment strategies. The focus of the paper is put on the methodological approach regarding the engineering of assembly processes for beam-shaping micro-optics and the formal representation of assembly objectives similar to representation in mechanical assemblies. Main topic of the paper is the engineering methodology for active alignment processes based on the classification of optical functions for beam-shaping optics and corresponding standardized measurement setups including adaptable alignment algorithms. The concepts are applied to industrial use-cases: (1) integrated collimation module for fast- and slow-axis and (2) beam-tilting subassembly consisting of a fast-axis collimator and micro-lens array. The paper concludes with an overview of current limitations as well as an outlook on the next development steps considering adhesive bonding processes.


Proceedings of SPIE | 2016

Model-based adhesive shrinkage compensation for increased bonding repeatability

Tobias Müller; Christian Schlette; Shunmuganathan Lakshmanan; Sebastian Haag; Daniel Zontar; Sebastian Sauer; Christian Wenzel; Christian Brecher; Jürgen Roβmann

The assembly process of optical components consists of two phases – the alignment and the bonding phase. Precision - or better process repeatability - is limited by the latter one. The limitation of the alignment precision is given by the measurement equipment and the manipulation technology applied. Today’s micromanipulators in combination with beam imaging setups allow for an alignment in the range of far below 100nm. However, once precisely aligned optics need to be fixed in their position. State o f the art in optics bonding for laser systems is adhesive bonding with UV-curing adhesives. Adhesive bonding is a multi-factorial process and thus subject to statistical process deviations. As a matter of fact, UV-curing adhesives inherit shrinkage effects during their curing process, making offsets for shrinkage compensation mandatory. Enhancing the process control of the adhesive bonding process is the major goal of the activities described in this paper. To improve the precision of shrinkage compensation a dynamic shrinkage prediction is envisioned by Fraunhofer IPT. Intense research activities are being practiced to gather a deeper understanding of the parameters influencing adhesive shrinkage behavior. These effects are of different nature – obviously being the raw adhesive material itself as well as its condition, the bonding geometry, environmental parameters like surrounding temperature and of course process parameters such as curing properties. Understanding the major parameters and linking them in a model-based shrinkage-prediction environment is the basis for improved process control. Results are being deployed by Fraunhofer in prototyping, as well as volume production solutions for laser systems.


Proceedings of SPIE | 2015

Strategies for precision adhesive bonding of micro-optical systems

Tobias Müller; Vyshak Kotnur Venu; Sebastian Haag; Daniel Zontar; Sebastian Sauer; Christian Wenzel; Christian Brecher

Today’s piezo-based micromanipulator technology allows for highly precise manipulation of optical components. A crucial question for the quality of optical assemblies is the misalignment after curing. The challenge of statistical deviations in the curing process requires a sophisticated knowledge on the relevant process parameters. An approach to meet these requirements is the empirical analysis such as characterization of shrinkage. Gaining sophisticated knowledge about the statistical process of adhesive bonding advances the quality of related production steps like beam-shaping optics, mounting of turning mirrors for fiber coupling or building resonators evaluating power, mode characteristics and beam shape. Maximizing the precision of these single assembly steps fosters the scope of improving the overall efficiency of the entire laser system. At Fraunhofer IPT research activities on the identification of relevant parameters for improved adhesive bonding precision have been undertaken and are ongoing. The influence of the volumetric repeatability of different automatic and manual dispensing methods play an important role. Also, the evaluation of UV-light sources and the relating illumination properties have a significant influence on the bonding result. Furthermore, common UV-curing adhesives are being examined on their performance and reliability for both highest precision prototyping, as well as their application as robust bonding medium in automated optics assembly cells. This paper sums up the parameters of most influence. Overall goal of these activities is the development of a prediction model for optimized shrinkage compensation and thus improved assembly quality.


Proceedings of SPIE | 2015

Maximizing coupling-efficiency of high-power diode lasers utilizing hybrid assembly technology

Daniel Zontar; M. Dogan; S. Fulghum; Tobias Müller; Sebastian Haag; Christian Brecher

In this paper, we present hybrid assembly technology to maximize coupling efficiency for spatially combined laser systems. High quality components, such as center-turned focusing units, as well as suitable assembly strategies are necessary to obtain highest possible output ratios. Alignment strategies are challenging tasks due to their complexity and sensitivity. Especially in low-volume production fully automated systems are economically at a disadvantage, as operator experience is often expensive. However reproducibility and quality of automatically assembled systems can be superior. Therefore automated and manual assembly techniques are combined to obtain high coupling efficiency while preserving maximum flexibility. The paper will describe necessary equipment and software to enable hybrid assembly processes. Micromanipulator technology with high step-resolution and six degrees of freedom provide a large number of possible evaluation points. Automated algorithms are necess ary to speed-up data gathering and alignment to efficiently utilize available granularity for manual assembly processes. Furthermore, an engineering environment is presented to enable rapid prototyping of automation tasks with simultaneous data ev aluation. Integration with simulation environments, e.g. Zemax, allows the verification of assembly strategies in advance. Data driven decision making ensures constant high quality, documents the assembly process and is a basis for further improvement. The hybrid assembly technology has been applied on several applications for efficiencies above 80% and will be discussed in this paper. High level coupling efficiency has been achieved with minimized assembly as a result of semi-automated alignment. This paper will focus on hybrid automation for optimizing and attaching turning mirrors and collimation lenses.

Collaboration


Dive into the Sebastian Haag's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge