Sebastian Hofman
Jagiellonian University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sebastian Hofman.
Molecular Ecology | 2007
Sebastian Hofman; Christina Spolsky; Thomas Uzzell; Dan Cogălniceanu; Wiesław Babik; Jacek M. Szymura
The fire‐bellied toads Bombina bombina and Bombina variegata, interbreed in a long, narrow zone maintained by a balance between selection and dispersal. Hybridization takes place between local, genetically differentiated groups. To quantify divergence between these groups and reconstruct their history and demography, we analysed nucleotide variation at the mitochondrial cytochrome b gene (1096 bp) in 364 individuals from 156 sites representing the entire range of both species. Three distinct clades with high sequence divergence (K2P = 8–11%) were distinguished. One clade grouped B. bombina haplotypes; the two other clades grouped B. variegata haplotypes. One B. variegata clade included only Carpathian individuals; the other represented B. variegata from the southwestern parts of its distribution: Southern and Western Europe (Balkano–Western lineage), Apennines, and the Rhodope Mountains. Differentiation between the Carpathian and Balkano–Western lineages, K2P ∼ 8%, approached interspecific divergence. Deep divergence among European Bombina lineages suggests their preglacial origin, and implies long and largely independent evolutionary histories of the species. Multiple glacial refugia were identified in the lowlands adjoining the Black Sea, in the Carpathians, in the Balkans, and in the Apennines. The results of the nested clade and demographic analyses suggest drastic reductions of population sizes during the last glacial period, and significant demographic growth related to postglacial colonization. Inferred history, supported by fossil evidence, demonstrates that Bombina ranges underwent repeated contractions and expansions. Geographical concordance between morphology, allozymes, and mtDNA shows that previous episodes of interspecific hybridization have left no detectable mtDNA introgression. Either the admixed populations went extinct, or selection against hybrids hindered mtDNA gene flow in ancient hybrid zones.
Evolution | 2006
Alexey Yanchukov; Sebastian Hofman; Jacek M. Szymura; Sergey V. Mezhzherin; Sviatoslav Y. Morozov-Leonov; Nicholas H. Barton; Beate Nurnberger
Abstract Bombina bombina and B. variegata are two anciently diverged toad taxa that have adapted to different breeding habitats yet hybridize freely in zones of overlap where their parapatric distributions meet. Here, we report on a joint genetic and ecological analysis of a hybrid zone in the vicinity of Stryi in western Ukraine. We used five unlinked allozyme loci, two nuclear single nucleotide polymorphisms and a mitochondrial DNA haplotype as genetic markers. Parallel allele frequency clines with a sharp central step occur across a sharp ecotone, where transitions in aquatic habitat, elevation, and terrestrial vegetation coincide. The width of the hybrid zone, estimated as the inverse of the maximum gradient in allele frequency, is 2.3 km. This is the smallest of four estimates derived from different clinal transects across Europe. We argue that the narrow cline near Stryi is mainly due to a combination of habitat distribution and habitat preference. Adult toads show a preference for either ponds (B. bombina) or puddles (B. variegata), which is known to affect the distribution of genotypes within the hybrid zones. At Stryi, it should cause a reduction of the dispersal rate across the ecotone and thus narrow the cline. A detailed comparison of all five intensively studied Bombina transects lends support to the hypothesis that habitat distribution plus habitat preference can jointly affect the structure of hybrid zones and, ultimately, the resulting barriers to gene flow between differentiated gene pools. This study also represents a resampling of an area that was last studied more than 70 years ago. Our allele-frequency clines largely coincide with those that were described then on the basis of morphological variation. However, we found asymmetrical introgression of B. variegata genes into B. bombina territory along the bank of a river.
Molecular Ecology | 2011
Anna Fijarczyk; Krystyna Nadachowska; Sebastian Hofman; Spartak N. Litvinchuk; W. Babik; Michał Stuglik; Günter Gollmann; Lukáš Choleva; Dan Cogălniceanu; Tanja D. Vukov; George Džukić; Jacek M. Szymura
Exact location and number of glacial refugia still remain unclear for many European cold‐blooded terrestrial vertebrates. We performed a fine‐scaled multilocus phylogeographic analysis of two Bombina species combining mitochondrial variation of 950 toads from 385 sites and nuclear genes (Rag‐1, Ncx‐1) from a subset of samples to reconstruct their colonization and contemporary variation patterns. We identified the lowlands northwest of the Black Sea and the Carpathians to be important refugial areas for B. bombina and B. variegata, respectively. This result emphasizes the importance of Central European refugia for ectothermic terrestrial species, far north of the Mediterranean areas regarded as exclusive glacial refugia for the animals. Additional refugia for B. variegata have been located in the southern Apennines and Balkans. In contrast, no evidence for the importance of other east European plains as refugial regions has been found. The distribution of mtDNA and Ncx‐1 variation suggests the presence of local refugia near the Black Sea for B. bombina; however, coalescent simulations did not allow to distinguish whether one or two refugia were present in the region. Strong genetic drift apparently accompanied postglacial expansions reducing diversity in the colonization areas. Extended sampling, coupled with the multilocus isolation with migration analysis, revealed a limited and geographically restricted gene flow from the Balkan to Carpathian populations of B. variegata. However, despite proximity of inferred B. bombina and B. variegata refugia, gene exchange between them was not detected.
Heredity | 2003
Beate Nurnberger; Sebastian Hofman; B Förg-Brey; G Praetzel; A Maclean; Jacek M. Szymura; Catherine M. Abbott; Nicholas H. Barton
Stable hybrid zones in which ecologically divergent taxa give rise to a range of recombinants are natural laboratories in which the genetic basis of adaptation and reproductive isolation can be unraveled. One such hybrid zone is formed by the fire-bellied toads Bombina bombina and B. variegata (Anura: Discoglossidae). Adaptations to permanent and ephemeral breeding habitats, respectively, have shaped numerous phenotypic differences between the taxa. All of these are, in principle, candidates for a genetic dissection via QTL mapping. We present here a linkage map of 28 codominant and 10 dominant markers in the Bombina genome. In an F2 cross, markers that were mainly microsatellites, SSCPs or allozymes were mapped to 20 linkage groups. Among the 40 isolated CA microsatellites, we noted a preponderance of compound and frequently interleaved CA–TA repeats as well as a striking polarity at the 5′ end of the repeats.
Molecular Phylogenetics and Evolution | 2013
Maciej Pabijan; Anna Wandycz; Sebastian Hofman; Karolina Węcek; Marcin Piwczyński; Jacek M. Szymura
A highly resolved and time-calibrated phylogeny based on nucleotide variation in 18 complete mitochondrial genomes is presented for all extant species and major lineages of fire-bellied toads of the genus Bombina (Bombinatoridae). Two sets of divergence time estimates are inferred by applying alternative fossil constraints as minima. Divergence time estimates from both analyses differed for the two oldest nodes. The earliest phylogenetic split occurred between small- and large-bodied Bombina (subgenera Bombina and Grobina, respectively) either in the Middle Oligocene or the Early Miocene. East Asian B. orientalis and European B. bombina+B. variegata diverged in the early or Middle Miocene. Divergence times inferred using the alternative fossil calibration strategies converged for the younger nodes, with broadly overlapping HPD intervals. The split between Bombina bombina and B. variegata occurred in the Late Miocene of Europe and somewhat preceded another deep mtDNA division between the Balkan B. v. scabra and B. v. variegata inhabiting the Carpathian Mts. Concurrently, the genetically distinct B. maxima diverged from other Grobina in southeast Asia in the Late Miocene or Pliocene. Our mtDNA phylogeny and a new species-tree analysis of published data (nuclear and mtDNA) suggest that B. fortinuptialis, B. lichuanensis and B. microdeladigitora may be conspecific geographic forms that separated due to Pleistocene climatic fluctuations in southeastern Asia. In the western Palearctic, the Late Pliocene to Pleistocene climatic vagaries most probably induced vicariant events in the evolutionary history of B. variegata that led to the formation of the two Balkan B. v. scabra lineages and the allopatric B. v. pachypus in the Apennine Peninsula. Divergence among B. bombina mtDNA lineages is low, with an Anatolian Turkey lineage as the sister group to the European mtDNA clades. In sum, Miocene diversification in the genus Bombina established six allopatrically distributed major mtDNA lineages that diversified during the Pliocene and Pleistocene and have survived until the present. The narrow habitat requirements of fire-bellied toads and extensive environmental changes throughout the Palearctic in the Neogene may have contributed to a putatively high extinction rate in these anurans resulting in the current east/west disjunction of their ranges.
Gene | 2012
Sebastian Hofman; Maciej Pabijan; Daria Dziewulska-Szwajkowska; Jacek M. Szymura
Natural transfer of mitochondrial DNA has occurred between three western Palaearctic waterfrog taxa: Pelophylax lessonae, Pelophylax ridibundus and their hybridogenetic hybrid, Pelophylax kl. esculentus. The transfer is asymmetric with most P. kl. esculentus and approximately one third of all central European P. ridibundus having mtDNA derived from P. lessonae (L-mtDNA). We obtained complete nucleotide sequences of multiple mitochondrial genomes (15,376-78 bp without control regions) from all 3 taxa, including a P. ridibundus frog with introgressed L-mtDNA. The gene content and organization of the mitogenomes correspond to those typical of neobatrachians. Divergence between the mtDNAs of P. lessonae and P. ridibundus is high with an uncorrected p-distance of 11.9% across the entire mitogenome. However, the rate of nucleotide substitution depends on the degree of functional constraint with up to 30-fold differences in levels of divergence. In general, mitochondrial genes encoding the translational machinery evolve very slowly, whereas genes encoding polypeptides of the electron transport system, especially the ND genes, evolve rapidly. Only 25 of 211-213 observed amino acid replacements could be classified as radical and are therefore more likely to be exposed to selection. A disproportionately high number of amino acid substitutions has occurred in the ND4, ND4L and cytb genes of the P. lessonae lineage (including 36% of all radical changes). In contrast to the interspecific divergence, nucleotide polymorphism within L- and R-mtDNA is very low: L-mtDNA haplotypes differed on average by only 19 nucleotides, while there was no variation within two mtDNAs derived from P. ridibundus. This is an expected finding considering that we have sampled a post-glacial expansion area. Moreover, the introgressed L-mtDNA on a P. ridibundus background differed from other L-mtDNAs by only a few substitutions, indicative of a very recent introgression event. We discuss our findings in the context of natural selection acting on L-mtDNA and its potential significance in cytonuclear epistasis.
Biochemical Genetics | 2000
Sebastian Hofman; Jacek M. Szymura
Segregation and linkage relationship of nine allozyme loci, which are fixed for alternative alleles in the European fire-bellied toads, Bombina bombina and B. variegata,were studied using artificial F1 hybrids to obtain backcross and F2 progeny. Alleles coding for electromorphs at nine loci (Ldh-1, Mdh-1, Idh-1, Ck, Ak, Gpi, Aat-1, Np, and G6pd)showed Mendelian ratios. Two of the loci, Ak and G6pd, were found to be closely linked (2 cM apart); the other loci assorted independently.
Organisms Diversity & Evolution | 2016
Magdalena Szarowska; Artur Osikowski; Sebastian Hofman; Andrzej Falniowski
The aims of the study were (i) to reveal the pattern of phylogeny of Pseudamnicola inhabiting the Aegean Islands, (ii) to describe and analyse the variation of the morphology in 17 populations of Pseudamnicola from the springs on the Aegean Islands not studied so far and considering also another seven populations studied earlier and (iii) to find out which model is more applicable to the island Pseudamnicola populations: either a model in which a relict fauna rich in endemics is differentiated in a way that mainly reflects the geological history of the area or a model in which a relatively young fauna is composed of more or less widely distributed taxa, with relatively high levels of gene flow among the springs they inhabit. To address the above issues, the morphology and the mitochondrial genes—cytochrome oxidase subunit I (COI) and ribosomal 16S—and nuclear genes—ribosomal 18S, 28S and histone 3 (H3)—were analysed. COI and COI+16S rRNA+18S datasets gave trees with identical topology in both ML and Bayesian inference. The 24 studied populations of Pseudamnicola form 16 clades, each of them generally having low levels of intrapopulation genetic differentiation. The generalised mixed Yule coalescent (GMYC) procedure and the Automatic Barcode Gap Discovery (ABGD) analysis for COI identified 16 Pseudamnicola entities coinciding with clades of the ML tree based on 44 haplotypes and 189 sequences. The present pattern of diversity, together with dating of divergence time, reflects a short story of colonisation/recolonisation, supported by the Late Pleistocene land bridges, rather than the consequences of earlier geological events. The principal component analysis (PCA) on the shells of the molecularly distinct clades showed differences, although variability ranges often overlap. Female reproductive organs showed no differences between the clades, and penile characters differed only in some cases.
Amphibia-reptilia | 2017
Krzysztof Kolenda; Agnieszka Pietras-Lebioda; Sebastian Hofman; Maria Ogielska; Maciej Pabijan
Recent molecular studies have detected the occurrence of exotic water frog species ( Pelophylax sp.) in central and western European populations. Here, we report genetic evidence for the occurrence of the Balkan water frog, Pelophylax kurtmuelleri , in southwestern Poland. We found a high frequency of an allele of serum albumin intron-1 and a mitochondrial cytochrome b haplotype specific for this southern taxon in frogs from the Barycz river drainage system. We interpret this finding as evidence of admixture between P. kurtmuelleri and the local ridibundus-esculentus water frog population. The origin of the exotic P. kurtmuelleri mitochondrial and nuclear alleles in southwestern Poland could be due to (i) hybridization after a human-mediated introduction of P. kurtmuelleri , (ii) the persistence of ancestral polymorphism in central European P. ridibundus , or (iii) hybridization between P. kurtmuelleri and P. ridibundus in the Balkans followed by the northward expansion of admixed P. ridibundus . Identical mtDNA haplotypes found in southwestern Poland and localities on the borders between Greece, Albania and Macedonia suggest that this region harboured the source population of P. kurtmuelleri at the studied site.
Mitochondrial DNA | 2015
Sebastian Hofman; Maciej Pabijan; Artur Osikowski; Spartak N. Litvinchuk; Jacek M. Szymura
Abstract We present the full-length mitogenome sequences of four European water frog species: Pelophylax cypriensis, P. epeiroticus, P. kurtmuelleri and P. shqipericus. The mtDNA size varied from 17,363 to 17,895 bp, and its organization with the LPTF tRNA gene cluster preceding the 12 S rRNA gene displayed the typical Neobatrachian arrangement. Maximum likelihood and Bayesian inference revealed a well-resolved mtDNA phylogeny of seven European Pelophylax species. The uncorrected p-distance for among Pelophylax mitogenomes was 9.6 (range 0.01–0.13). Most divergent was the P. shqipericus mitogenome, clustering with the “P. lessonae” group, in contrast to the other three new Pelophylax mitogenomes related to the “P. bedriagae/ridibundus” lineage. The new mitogenomes resolve ambiguities of the phylogenetic placement of P. cretensis and P. epeiroticus.