Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maciej Pabijan is active.

Publication


Featured researches published by Maciej Pabijan.


Molecular Phylogenetics and Evolution | 2013

Radically different phylogeographies and patterns of genetic variation in two European brown frogs, genus Rana

Miguel Vences; J. Susanne Hauswaldt; Sebastian Steinfartz; Oliver Rupp; Alexander Goesmann; Sven Künzel; Pablo Orozco-terWengel; David R. Vieites; Sandra Nieto-Román; Sabrina Haas; Clara Laugsch; Marcelo Gehara; Sebastian Bruchmann; Maciej Pabijan; Ann-Kathrin Ludewig; Dirk Rudert; Claudio Angelini; Leo J. Borkin; Pierre-André Crochet; Angelica Crottini; Alain Dubois; Gentile Francesco Ficetola; Pedro Galán; Philippe Geniez; Monika Hachtel; Olga Jovanovic; Spartak N. Litvinchuk; Petros Lymberakis; Annemarie Ohler; Nazar A. Smirnov

We reconstruct range-wide phylogeographies of two widespread and largely co-occurring Western Palearctic frogs, Rana temporaria and R. dalmatina. Based on tissue or saliva samples of over 1000 individuals, we compare a variety of genetic marker systems, including mitochondrial DNA, single-copy protein-coding nuclear genes, microsatellite loci, and single nucleotide polymorphisms (SNPs) of transcriptomes of both species. The two focal species differ radically in their phylogeographic structure, with R. temporaria being strongly variable among and within populations, and R. dalmatina homogeneous across Europe with a single strongly differentiated population in southern Italy. These differences were observed across the various markers studied, including microsatellites and SNP density, but especially in protein-coding nuclear genes where R. dalmatina had extremely low heterozygosity values across its range, including potential refugial areas. On the contrary, R. temporaria had comparably high range-wide values, including many areas of probable postglacial colonization. A phylogeny of R. temporaria based on various concatenated mtDNA genes revealed that two haplotype clades endemic to Iberia form a paraphyletic group at the base of the cladogram, and all other haplotypes form a monophyletic group, in agreement with an Iberian origin of the species. Demographic analysis suggests that R. temporaria and R. dalmatina have genealogies of roughly the same time to coalescence (TMRCA ~3.5 mya for both species), but R. temporaria might have been characterized by larger ancestral and current effective population sizes than R. dalmatina. The high genetic variation in R. temporaria can therefore be explained by its early range expansion out of Iberia, with subsequent cycles of differentiation in cryptic glacial refugial areas followed by admixture, while the range expansion of R. dalmatina into central Europe is a probably more recent event.


Journal of Evolutionary Biology | 2012

Small body size increases the regional differentiation of populations of tropical mantellid frogs (Anura: Mantellidae)

Maciej Pabijan; Katharina C. Wollenberg; Miguel Vences

The processes affecting species diversification may also exert an influence on patterns of genetic variability within species. We evaluated the contributions of five variables potentially influencing clade diversification (body size, reproductive mode, range size, microhabitat and skin texture) on mtDNA divergence and polymorphism among populations of 40 species of frogs (Mantellidae) from two rainforest communities in Madagascar. We report an inverse association between body size and nucleotide divergence between populations but find no influence of other variables on genetic variation. Body size explained ca. 11% of the variation in nucleotide divergence between populations and was coupled with high FST levels and an absence of haplotype sharing in small‐bodied and medium‐sized frogs. Low dispersal ability is likely the proximate mechanism producing higher population differentiation in small mantellids. The lack of genetic cohesion among populations establishes regional genetic fragmentation which in turn has the potential to accelerate rates of allopatric speciation in small frogs relative to large species. However, there is little evidence of increased speciation rates in these or other small‐bodied organisms. We reconcile these contradictory observations by suggesting that lower dispersal ability also curbs colonization of new areas, decelerating diversification in weak dispersers. Our results imply that the intermediate dispersal model also applies to amphibians and may explain inconsistent previous results on the correlation of body size and speciation rate.


Molecular Phylogenetics and Evolution | 2013

Complete mitochondrial genomes resolve phylogenetic relationships within Bombina (Anura: Bombinatoridae).

Maciej Pabijan; Anna Wandycz; Sebastian Hofman; Karolina Węcek; Marcin Piwczyński; Jacek M. Szymura

A highly resolved and time-calibrated phylogeny based on nucleotide variation in 18 complete mitochondrial genomes is presented for all extant species and major lineages of fire-bellied toads of the genus Bombina (Bombinatoridae). Two sets of divergence time estimates are inferred by applying alternative fossil constraints as minima. Divergence time estimates from both analyses differed for the two oldest nodes. The earliest phylogenetic split occurred between small- and large-bodied Bombina (subgenera Bombina and Grobina, respectively) either in the Middle Oligocene or the Early Miocene. East Asian B. orientalis and European B. bombina+B. variegata diverged in the early or Middle Miocene. Divergence times inferred using the alternative fossil calibration strategies converged for the younger nodes, with broadly overlapping HPD intervals. The split between Bombina bombina and B. variegata occurred in the Late Miocene of Europe and somewhat preceded another deep mtDNA division between the Balkan B. v. scabra and B. v. variegata inhabiting the Carpathian Mts. Concurrently, the genetically distinct B. maxima diverged from other Grobina in southeast Asia in the Late Miocene or Pliocene. Our mtDNA phylogeny and a new species-tree analysis of published data (nuclear and mtDNA) suggest that B. fortinuptialis, B. lichuanensis and B. microdeladigitora may be conspecific geographic forms that separated due to Pleistocene climatic fluctuations in southeastern Asia. In the western Palearctic, the Late Pliocene to Pleistocene climatic vagaries most probably induced vicariant events in the evolutionary history of B. variegata that led to the formation of the two Balkan B. v. scabra lineages and the allopatric B. v. pachypus in the Apennine Peninsula. Divergence among B. bombina mtDNA lineages is low, with an Anatolian Turkey lineage as the sister group to the European mtDNA clades. In sum, Miocene diversification in the genus Bombina established six allopatrically distributed major mtDNA lineages that diversified during the Pliocene and Pleistocene and have survived until the present. The narrow habitat requirements of fire-bellied toads and extensive environmental changes throughout the Palearctic in the Neogene may have contributed to a putatively high extinction rate in these anurans resulting in the current east/west disjunction of their ranges.


Molecular Phylogenetics and Evolution | 2012

A multigene species tree for Western Mediterranean painted frogs (Discoglossus).

Maciej Pabijan; Angelica Crottini; Dennis Reckwell; Iker Irisarri; J. Susanne Hauswaldt; Miguel Vences

Painted frogs (Discoglossus) are an anuran clade that originated in the Upper Miocene. Extant species are morphologically similar and have a circum-Mediterranean distribution. We assembled a multilocus dataset from seven nuclear and four mitochondrial genes for several individuals of all but one of the extant species and reconstructed a robust phylogeny by applying a coalescent-based species-tree method and a concatenation approach, both of which gave congruent results. The earliest phylogenetic split within Discoglossus separates D. montalentii from a clade comprising all other species. Discoglossus montalentii is monophyletic for haplotype variation at all loci and has distinct morphological, bioacoustic and karyotypic characters. We find moderate support for a sister-group relationship between the Iberian taxa and the Moroccan D. scovazzi, and high support for a D. pictus -D. sardus clade distributed around the Tyrrhenian basin. Topological discordance among gene trees during the speciation of D. galganoi, D. scovazzi, D. pictus and D. sardus is interpreted as the consequence of nearly simultaneous, vicariant diversification. The timing of these events is unclear, but possibly coincided with the final geotectonic rearrangement of the Western Mediterranean in the Middle Miocene or later during the Messinian salinity crisis. The Iberian taxa D. galganoi galganoi and D. g. jeanneae are reciprocally monophyletic in mitochondrial DNA but not in nuclear gene trees, and are therefore treated as subspecies of D. galganoi.


Molecular Phylogenetics and Evolution | 2012

The influence of riverine barriers on phylogeographic patterns of Malagasy reed frogs (Heterixalus).

Philip-Sebastian Gehring; Maciej Pabijan; Jasmin E. Randrianirina; Frank Glaw; Miguel Vences

We analyzed the influence of large rivers on the phylogeography of endemic widespread amphibians along Madagascars east coast, using as models various species and species complexes of Malagasy reed frogs (Heterixalus spp.) that are specialized to either highland or lowland habitats. We assembled a dense sampling across the full species ranges and used mitochondrial (cob) as well as nuclear (Rag-1) DNA sequences to assess their phylogeographies. A multigene mtDNA phylogeny of each species was constructed to establish the relationships among the main phylogroups, in order to understand the geographical regions of clade origins and possible directions of historical range expansions. Distinct intraspecific lineages as diagnosed by mitochondrial haplotype clades were found in highlands and lowlands. Most geographical boundaries among these phylogroups did not coincide with rivers, indicating that the influence of rivers on the primary divergence of phylogroups is probably minor in these frogs. Nevertheless, we found evidence for the influence of one riverine barrier in the lowland species complex, where the most important genetic discontinuity (the border between Heterixalus madagascariensis and H. alboguttatus) coincides with the geographical position of the Mangoro River on Madagascars central east coast. Analyses of the highland species H. betsileo revealed the existence of six deep haplotype lineages, separated in two major subpopulations which differ largely in altitudinal distribution and do not overlap with the geographical settings of rivers in the highlands. Furthermore, our analyses indicated that most of the major intraspecific lineages of reed frogs show signs of a rather recent population expansion.


Evolutionary Ecology | 2015

Genetic divergence in tropical anurans: deeper phylogeographic structure in forest specialists and in topographically complex regions

Ariel Rodríguez; Miriam Börner; Maciej Pabijan; Marcelo Gehara; Célio F. B. Haddad; Miguel Vences

Many tropical organisms show large genetic differences among populations, yet the prevalent drivers of the underlying divergence processes are incompletely understood. We explored the effect of several habitat and natural history features (body size, macrohabitat, microhabitat, reproduction site, climatic heterogeneity, and topography) on population genetic divergence in tropical amphibians, based on a data set of 2680 DNA sequences of the mitochondrial cytochrome b gene in 39 widely distributed frog species from Brazil, Central America, Cuba, and Madagascar. Generalized linear models were implemented in an information-theoretic framework to evaluate the effects of the six predictors on genetic divergence among populations, measured as spatially corrected pairwise distances. Results indicate that topographic complexity and macrohabitat preferences have a strong effect on population divergence with species specialized to forest habitat and/or from topographically complex regions showing higher phylogeographic structure. This relationship changed after accounting for phylogenetic relatedness among taxa rendering macrohabitat preferences as the most important feature shaping genetic divergence. The remaining predictors showed negligible effects on the observed genetic divergence. A similar analysis performed using the population-scaled mutation rate (Θ) as response variable showed little effect of the predictors. Our results demonstrate greater evolutionary independence among populations of anurans from forested regions versus species from open habitats. This pattern may result from lower vagility and stringency in reproductive requirements of rainforest species. Conversely, open landscapes may offer ephemeral and unstable breeding sites suitable for vagile generalist species, resulting in reduced intraspecific divergence. Our results predict that, for a given period of time, there should be a higher chance of speciation in tropical anurans living in forests than in species adapted to open habitats.


Genome Biology and Evolution | 2015

Constraint and Adaptation in newt Toll-Like Receptor Genes

Wiesław Babik; Katarzyna Dudek; Anna Fijarczyk; Maciej Pabijan; Michał Stuglik; Rafał Szkotak; Piotr Zieliński

Acute die-offs of amphibian populations worldwide have been linked to the emergence of viral and fungal diseases. Inter and intraspecific immunogenetic differences may influence the outcome of infection. Toll-like receptors (TLRs) are an essential component of innate immunity and also prime acquired defenses. We report the first comprehensive assessment of TLR gene variation for urodele amphibians. The Lissotriton newt TLR repertoire includes representatives of 13 families and is compositionally most similar to that of the anuran Xenopus. Both ancient and recent gene duplications have occurred in urodeles, bringing the total number of TLR genes to at least 21. Purifying selection has predominated the evolution of newt TLRs in both long (∼70 Ma) and medium (∼18 Ma) timescales. However, we find evidence for both purifying and positive selection acting on TLRs in two recently diverged (2–5 Ma) allopatric evolutionary lineages (Lissotriton montandoni and L. vulgaris graecus). Overall, both forms of selection have been stronger in L. v. graecus, while constraint on most TLR genes in L. montandoni appears relaxed. The differences in selection regimes are unlikely to be biased by demographic effects because these were controlled by means of a historical demographic model derived from an independent data set of 62 loci. We infer that TLR genes undergo distinct trajectories of adaptive evolution in closely related amphibian lineages, highlight the potential of TLRs to capture the signatures of different assemblages of pathogenic microorganisms, and suggest differences between lineages in the relative roles of innate and acquired immunity.


Gene | 2012

Mitochondrial genome organization and divergence in hybridizing central European waterfrogs of the Pelophylax esculentus complex (Anura, Ranidae).

Sebastian Hofman; Maciej Pabijan; Daria Dziewulska-Szwajkowska; Jacek M. Szymura

Natural transfer of mitochondrial DNA has occurred between three western Palaearctic waterfrog taxa: Pelophylax lessonae, Pelophylax ridibundus and their hybridogenetic hybrid, Pelophylax kl. esculentus. The transfer is asymmetric with most P. kl. esculentus and approximately one third of all central European P. ridibundus having mtDNA derived from P. lessonae (L-mtDNA). We obtained complete nucleotide sequences of multiple mitochondrial genomes (15,376-78 bp without control regions) from all 3 taxa, including a P. ridibundus frog with introgressed L-mtDNA. The gene content and organization of the mitogenomes correspond to those typical of neobatrachians. Divergence between the mtDNAs of P. lessonae and P. ridibundus is high with an uncorrected p-distance of 11.9% across the entire mitogenome. However, the rate of nucleotide substitution depends on the degree of functional constraint with up to 30-fold differences in levels of divergence. In general, mitochondrial genes encoding the translational machinery evolve very slowly, whereas genes encoding polypeptides of the electron transport system, especially the ND genes, evolve rapidly. Only 25 of 211-213 observed amino acid replacements could be classified as radical and are therefore more likely to be exposed to selection. A disproportionately high number of amino acid substitutions has occurred in the ND4, ND4L and cytb genes of the P. lessonae lineage (including 36% of all radical changes). In contrast to the interspecific divergence, nucleotide polymorphism within L- and R-mtDNA is very low: L-mtDNA haplotypes differed on average by only 19 nucleotides, while there was no variation within two mtDNAs derived from P. ridibundus. This is an expected finding considering that we have sampled a post-glacial expansion area. Moreover, the introgressed L-mtDNA on a P. ridibundus background differed from other L-mtDNAs by only a few substitutions, indicative of a very recent introgression event. We discuss our findings in the context of natural selection acting on L-mtDNA and its potential significance in cytonuclear epistasis.


African Journal of Herpetology | 2010

Two syntopic and microendemic new frogs of the genus Blommersia from the east coast of Madagascar

Miguel Vences; Jörn Köhler; Maciej Pabijan; Frank Glaw

Abstract We describe two new species of semiarboreal frogs from the northern central east coast of Madagascar which occur syntopically, at least on the island of Nosy Boraha. The two species are morphologically closest to Blommersia wittei, but differ in advertisement calls and molecular phylogenetic relationships. One of the new species has a remarkable femoral gland structure, as these are shifted towards the distal part of the thigh, close to the knee joint. The new species are apparently microendemic to a small stretch of Madagascars east coast and have so far not been found at higher elevations. Since both new species are tolerant of habitat disturbance and occur in anthropogenically altered habitats, such as plantations and villages, we propose an IUCN threat status of Least Concern despite their restricted extent of occurrence.


Journal of Molecular Evolution | 2008

Comparative Analysis of Mitochondrial Genomes in Bombina (Anura; Bombinatoridae)

Maciej Pabijan; Christina Spolsky; Thomas Uzzell; Jacek M. Szymura

The complete mitochondrial genomes of two basal anurans, Bombina bombina and B. variegata (Anura; Bombinatoridae), were sequenced. The gene order of their mitochondrial DNA (mtDNA) is identical to that of canonical vertebrate mtDNA. In contrast, we show that there are structural differences in regulatory regions and protein coding genes between the mtDNA of these two closely related species. Corrected sequence divergence between the mtDNA of B. bombina and B. variegata amounts to 8.7% (2.3% divergence in amino acids). Comparisons with two East Asian congeners show that the control region contains two repeat regions, LV1 and LV2, present in all species except for B. bombina, in which LV2 has been secondarily lost. The rRNAs and tRNAs are characterized by low nucleotide divergence. The protein coding genes are considerably more disparate, although functional constraint is high but variable among genes, as evidenced by dN/dS ratios. A mtDNA phylogeny established the distribution of autapomorphic nonsynonomous substitutions in the mitogenomes of B. bombina and B. variegata. Nine of 98 nonsynonomous substitutions led to radical amino acid replacements that may alter mitochondrial protein function. Most radical substitutions were found in ND2, ND4, or ND5, encoding mitochondrial subunits of complex I of the electron transport system. The extensive divergence between the mitogenomes of B. bombina and B. variegata is discussed in terms of its possible role in impeding gene flow in natural hybrid zones between these two species.

Collaboration


Dive into the Maciej Pabijan's collaboration.

Top Co-Authors

Avatar

Miguel Vences

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Glaw

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcin Liana

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge