Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastian Kruss is active.

Publication


Featured researches published by Sebastian Kruss.


Advanced Drug Delivery Reviews | 2013

Carbon nanotubes as optical biomedical sensors

Sebastian Kruss; Andrew J. Hilmer; Jingqing Zhang; Nigel F. Reuel; Bin Mu; Michael S. Strano

Biosensors are important tools in biomedical research. Moreover, they are becoming an essential part of modern healthcare. In the future, biosensor development will become even more crucial due to the demand for personalized-medicine, point-of care devices and cheaper diagnostic tools. Substantial advances in sensor technology are often fueled by the advent of new materials. Therefore, nanomaterials have motivated a large body of research and such materials have been implemented into biosensor devices. Among these new materials carbon nanotubes (CNTs) are especially promising building blocks for biosensors due to their unique electronic and optical properties. Carbon nanotubes are rolled-up cylinders of carbon monolayers (graphene). They can be chemically modified in such a way that biologically relevant molecules can be detected with high sensitivity and selectivity. In this review article we will discuss how carbon nanotubes can be used to create biosensors. We review the latest advancements of optical carbon nanotube based biosensors with a special focus on near-infrared (NIR)-fluorescence, Raman-scattering and fluorescence quenching.


northeast bioengineering conference | 2013

Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes

Jingqing Zhang; Markita P. Landry; Paul W. Barone; Jong Ho Kim; Shangchao Lin; Zachary W. Ulissi; Dahua Lin; Bin Mu; Ardemis A. Boghossian; Andrew J. Hilmer; Alina Y. Rwei; Allison Hinckley; Sebastian Kruss; Mia Shandell; Nitish Nair; Steven Blake; Fatih Şen; Selda Şen; Robert G. Croy; Deyu Li; Kyungsuk Yum; Jin Ho Ahn; Hong Jin; Daniel A. Heller; John M. Essigmann; Daniel Blankschtein; Michael S. Strano

Nanomaterials are often functionalized with biological ligands to enable their use as sensors of biological activity. However, the intricacies of nano-bio interactions are poorly understood, which hampers our ability to design nanomaterial-based sensors. Current experimental tools have been unable to visualize interactions occurring on the nano-bio interface with the spatial and temporal resolution needed to quantify biological interactions at their fundamental length and time scales. To fill the need for concurrent visualization of nanoparticles and biomolecules, we have combined two common microscopy techniques, one being for the study of biomolecules and the other for the study of nanoparticles, into a single instrument that has the capacity to study both nanoparticles and biological molecules simultaneously with spatial and temporal resolution that is appropriate for nanoscale interactions. This novel instrument has been used for the characterization of high-sensitivity sensors by designing synthetic biological polymers to selectively encapsulate single-wall carbon nanotubes. The design of synthetic sensing tools based on nanoparticle-biomolecule hybrids is promising for areas in need of high-specificity sensors, such as label-free detection of molecules within a cell, nanoparticle-based diagnostic tools, and nanoscale therapeutics. We introduce three examples of high-sensitivity and high-selectivity synthetic sensors that have the ability to detect a variety of molecules on a single-molecule scale: riboflavin, L-thyroxine, and oestradiol. These sensors have been used to detect and quantify riboflavin levels within a live murine macrophage cell in real-time. The findings provided herein will enable the development of early-onset diagnostic tools at the level of a single cell.


Journal of the American Chemical Society | 2014

Neurotransmitter Detection Using Corona Phase Molecular Recognition on Fluorescent Single-Walled Carbon Nanotube Sensors

Sebastian Kruss; Markita P. Landry; Emma Vander Ende; Barbara M.A. Lima; Nigel F. Reuel; Jingqing Zhang; Justin T. Nelson; Bin Mu; Andrew J. Hilmer; Michael S. Strano

Temporal and spatial changes in neurotransmitter concentrations are central to information processing in neural networks. Therefore, biosensors for neurotransmitters are essential tools for neuroscience. In this work, we applied a new technique, corona phase molecular recognition (CoPhMoRe), to identify adsorbed polymer phases on fluorescent single-walled carbon nanotubes (SWCNTs) that allow for the selective detection of specific neurotransmitters, including dopamine. We functionalized and suspended SWCNTs with a library of different polymers (n = 30) containing phospholipids, nucleic acids, and amphiphilic polymers to study how neurotransmitters modulate the resulting band gap, near-infrared (nIR) fluorescence of the SWCNT. We identified several corona phases that enable the selective detection of neurotransmitters. Catecholamines such as dopamine increased the fluorescence of specific single-stranded DNA- and RNA-wrapped SWCNTs by 58-80% upon addition of 100 μM dopamine depending on the SWCNT chirality (n,m). In solution, the limit of detection was 11 nM [K(d) = 433 nM for (GT)15 DNA-wrapped SWCNTs]. Mechanistic studies revealed that this turn-on response is due to an increase in fluorescence quantum yield and not covalent modification of the SWCNT or scavenging of reactive oxygen species. When immobilized on a surface, the fluorescence intensity of a single DNA- or RNA-wrapped SWCNT is enhanced by a factor of up to 5.39 ± 1.44, whereby fluorescence signals are reversible. Our findings indicate that certain DNA/RNA coronae act as conformational switches on SWCNTs, which reversibly modulate the SWCNT fluorescence. These findings suggest that our polymer-SWCNT constructs can act as fluorescent neurotransmitter sensors in the tissue-compatible nIR optical window, which may find applications in neuroscience.


Accounts of Chemical Research | 2014

Recent advances in molecular recognition based on nanoengineered platforms.

Bin Mu; Jingqing Zhang; Thomas P. McNicholas; Nigel F. Reuel; Sebastian Kruss; Michael S. Strano

Nanoparticles and nanoengineered platforms have great potential for technologies involving biomoleuclar detection or cell-related biosensing, and have provided effective chemical interfaces for molecular recognition. Typically, chemists work on the modification of synthetic polymers or macromolecules, which they link to the nanoparticles by covalent or noncovalent approaches. The motivation for chemical modification is to enhance the selectivity and sensitivity, and to improve the biocompatibility for the in vivo applications. In this Account, we present recent advances in the development and application of chemical interfaces for molecular recognition for nanoparticles and nanoengineered platforms, in particular single-walled carbon nanotubes (SWNTs). We discuss emerging approaches for recognizing small molecules, glycosylated proteins, and serum biomarkers. For example, we compare and discuss detection methods for ATP, NO, H2O2, and monosaccharides for recent nanomaterials. Fluorometric detection appears to have great potential for quantifying concentration gradients and determining their location in living cells. For macromolecular detection, new methods for glycoprofiling using such interfaces appear promising, and benefit specifically from the potential elimination of cumbersome labeling and liberation steps during conventional analysis of glycans, augmenting the currently used mass spectrometry (MS), capillary electrophoresis (CE), and liquid chromatography (LC) methods. In particular, we demonstrated the great potential of fluorescent SWNTs for glycan-lectin interactions sensing. In this case, SWNTs are noncovalently functionalized to introduce a chelated nickel group. This group provides a docking site for the His-tagged lectin and acts as the signal modulator. As the nickel proximity to the SWNT surface changes, the fluorescent signal is increased or attenuated. When a free glycan or glycosylated probe interacts with the lectin, the signal increases and they are able to obtain loading curves similar to surface plasmon resonance measurements. They demonstrate the sensitivity and specificity of this platform with two higher-affined glycan-lectin pairs: fucose (Fuc) to PA-IIL and N-acetylglucosamine (GlcNAc) to GafD. Lastly, we discuss how developments in protein biomarker detection in general are benefiting specifically from label-free molecular recognition. Electrical field effect transistors, chemi-resistive and fluorometric nanosensors based on various nanomaterials have demonstrated substantial progress in recent years in addressing this challenging problem. In this Account, we compare the balance between sensitivity, selectivity, and nonspecific adsorption for various applications. In particular, our group has utilized SWNTs as fluorescence sensors for label-free protein-protein interaction measurements. In this assay, we have encapsulated each nanotube in a biocompatible polymer, chitosan, which has been further modified to conjugate nitrilotriacetic acid (NTA) groups. After Ni(2+) chelation, NTA Ni(2+) complexes bind to his-tagged proteins, resulting in a local environment change of the SWNT array, leading to optical fluorescence modulation with detection limit down to 100 nM. We have further engineered the platform to monitor single protein binding events, with an even lower detection limit down to 10 pM.


Advanced Healthcare Materials | 2014

A Rapid, Direct, Quantitative, and Label‐Free Detector of Cardiac Biomarker Troponin T Using Near‐Infrared Fluorescent Single‐Walled Carbon Nanotube Sensors

Jingqing Zhang; Sebastian Kruss; Andrew J. Hilmer; Steven Shimizu; Zeke Schmois; Flor De La Cruz; Paul W. Barone; Nigel F. Reuel; Daniel A. Heller; Michael S. Strano

Patients with chest pain account for 10% of US emergency room visits according to data from the Center for Disease Control and Prevention (2013). For triage of these patients, cardiac biomarkers troponin I and T are endorsed as standard indicators for acute myocardial infarction (AMI, or heart attack). Thus, there is significant interest in developing a rapid, point-of-care (POC) device for troponin detection. In this work, a rapid, quantitative, and label-free assay, which is specific for cardiac troponin T (cTnT) detection, using fluorescent single-walled carbon nanotubes (SWCNTs), is demonstrated. Chitosan-wrapped carbon nanotubes are cross-linked to form a thin gel that is further functionalized with nitrilotriacetic acid (NTA) moieties. Upon chelation of Ni(2+) , the Ni(2+) -NTA group binds to a hexa-histidine-modified troponin antibody, which specifically recognizes the target protein, troponin T. As the troponin T binds to the antibody, the local environment of the sensor changes, allowing direct troponin detection through intensity changes in SWCNT bandgap fluorescence. This platform represents the first near-infrared SWCNT sensor array for cTnT detection. Detection can be completed within 5 min, demonstrating a linear response to cTnT concentration and an experimental detection limit of 100 ng mL(-1) (2.5 nm). This platform provides a promising new tool for POC AMI detection in the future. Moreover, the work presents two new methods of quantifying the number of amines and carboxylic groups, respectively, in a carbon hydrogel matrices.


Nature Communications | 2016

Protein-targeted corona phase molecular recognition

Gili Bisker; Juyao Dong; Hoyoung D. Park; Nicole M. Iverson; Jiyoung Ahn; Justin T. Nelson; Markita P. Landry; Sebastian Kruss; Michael S. Strano

Corona phase molecular recognition (CoPhMoRe) uses a heteropolymer adsorbed onto and templated by a nanoparticle surface to recognize a specific target analyte. This method has not yet been extended to macromolecular analytes, including proteins. Herein we develop a variant of a CoPhMoRe screening procedure of single-walled carbon nanotubes (SWCNT) and use it against a panel of human blood proteins, revealing a specific corona phase that recognizes fibrinogen with high selectivity. In response to fibrinogen binding, SWCNT fluorescence decreases by >80% at saturation. Sequential binding of the three fibrinogen nodules is suggested by selective fluorescence quenching by isolated sub-domains and validated by the quenching kinetics. The fibrinogen recognition also occurs in serum environment, at the clinically relevant fibrinogen concentrations in the human blood. These results open new avenues for synthetic, non-biological antibody analogues that recognize biological macromolecules, and hold great promise for medical and clinical applications.


Advanced Materials | 2010

Stimulation of Cell Adhesion at Nanostructured Teflon Interfaces

Sebastian Kruss; Tobias Wolfram; Raquel Dr. Martin; Stefanie Neubauer; Horst Kessler; Joachim P. Spatz

Design and control of physico-chemical surface properties of polymeric materials are one of the key challenges in biomedical engineering. Among these materials, polymers for the application as artifi cial vascular grafts are one of the most diffi cult and important applications in biomedical engineering these days. Their failure causes severe clinical complications. Besides polyesters and polyurethanes, polytetrafl uoroethylene (PTFE) is a commonly applied material for artifi cial vascular grafts. In general, two specifi c problems have to be overcome, especially when dealing with small artifi cial vascular grafts ( < 4 mm): thrombosis and restenosis. [ 1 ] The ultimate goal of vascular graft engineering is a graft with a stable and confl uent layer of endothelial cells. Such a monolayer of endothelial cells could potentially mimic the luminal surface of a real vessel and would solve the patency problems of small-diameter vascular grafts in the future. PTFE has benefi cial properties like small friction, great chemical stability and very good compatibility in vivo in general. Missing functional surface groups limits the application of known (bio)functionalization methods for PTFE based interfaces as it usually impedes the formation of covalent bonds. Two approaches can be utilized to overcome this dilemma. On the one hand, reactive groups can be introduced by procedures like plasma treatment, [ 2 ] UV treatment [ 3 ] and/or chemical reduction. [ 4 ] On the other hand, one can take advantage of non-covalent immobilization by unspecifi c adsorption. [ 5 ] Besides their advantages, both methods share common disadvantages as they are either limited to specifi c biomolecules and harsh procedures or they lack stability and control of biomolecule conformation. Therefore, biocompatibility of PTFE is limited. In order to enhance biocompatibility at interfaces most scientifi c approaches use ligands on the graft surface to strengthen endothelial cell adhesion compared to bare grafts.


ACS Nano | 2013

Adhesion maturation of neutrophils on nanoscopically presented platelet glycoprotein Ibα.

Sebastian Kruss; Luise Erpenbeck; Katharina Amschler; Tabea A. Mundinger; Heike Boehm; Hans Joachim Helms; Tim Friede; Robert Keith Andrews; Michael P. Schön; Joachim P. Spatz

Neutrophilic granulocytes play a fundamental role in cardiovascular disease. They interact with platelet aggregates via the integrin Mac-1 and the platelet receptor glycoprotein Ibα (GPIbα). In vivo, GPIbα presentation is highly variable under different physiological and pathophysiological conditions. Here, we quantitatively determined the conditions for neutrophil adhesion in a biomimetic in vitro system, which allowed precise adjustment of the spacings between human GPIbα presented on the nanoscale from 60 to 200 nm. Unlike most conventional nanopatterning approaches, this method provided control over the local receptor density (spacing) rather than just the global receptor density. Under physiological flow conditions, neutrophils required a minimum spacing of GPIbα molecules to successfully adhere. In contrast, under low-flow conditions, neutrophils adhered on all tested spacings with subtle but nonlinear differences in cell response, including spreading area, spreading kinetics, adhesion maturation, and mobility. Surprisingly, Mac-1-dependent neutrophil adhesion was very robust to GPIbα density variations up to 1 order of magnitude. This complex response map indicates that neutrophil adhesion under flow and adhesion maturation are differentially regulated by GPIbα density. Our study reveals how Mac-1/GPIbα interactions govern cell adhesion and how neutrophils process the number of available surface receptors on the nanoscale. In the future, such in vitro studies can be useful to determine optimum therapeutic ranges for targeting this interaction.


Langmuir | 2012

Au−Ag hybrid nanoparticle patterns of tunable size and density on glass and polymeric supports

Sebastian Kruss; Vesna Srot; Peter A. van Aken; Joachim P. Spatz

This paper describes a method to pattern surfaces with Au-Ag hybrid nanoparticles. We used block copolymer micelle lithography of Au nanoparticles and electroless deposition of Ag. The combination of these two methods enables independent tuning of nanoparticle spacing and Ag-shell size. For this purpose, 8 nm large patterned Au nanoparticle seeds served as nuclei for the electroless deposition of silver that is based on a modified Tollens process with glucose. By adjusting the reaction conditions, specific growth of Ag on top of the Au seeds has been accomplished and analyzed by SEM, HRTEM, XEDS, and UV-vis spectroscopy. We could show that this versatile and green method is feasible on glass as well as on biomedical-relevant polymers like poly(ethylene glycol) hydrogels and amorphous Teflon. In conclusion, this method provides a new route to pattern glass and polymeric surfaces with Au-Ag hybrid nanoparticles. It will have many uses in applications such as surface enhanced Raman spectroscopy (SERS) or antimicrobial coatings for which hybrid nanoparticle density, size, and morphology are important.


ACS Nano | 2013

Emergent Properties of Nanosensor Arrays: Applications for Monitoring IgG Affinity Distributions, Weakly Affined Hypermannosylation, and Colony Selection for Biomanufacturing

Nigel F. Reuel; Brittany R. Grassbaugh; Sebastian Kruss; J. Zachary Mundy; Cary Francis Opel; Adebola O. Ogunniyi; Kamal Egodage; Ramon Wahl; Bernhard Helk; Jingqing Zhang; Z. Ilke Kalcioglu; Kevin Tvrdy; Darin O. Bellisario; Bin Mu; Steven Blake; Krystyn J. Van Vliet; J. Christopher Love; Karl Dane Wittrup; Michael S. Strano

It is widely recognized that an array of addressable sensors can be multiplexed for the label-free detection of a library of analytes. However, such arrays have useful properties that emerge from the ensemble, even when monofunctionalized. As examples, we show that an array of nanosensors can estimate the mean and variance of the observed dissociation constant (KD), using three different examples of binding IgG with Protein A as the recognition site, including polyclonal human IgG (KD μ = 19 μM, σ(2) = 1000 mM(2)), murine IgG (KD μ = 4.3 nM, σ(2) = 3 μM(2)), and human IgG from CHO cells (KD μ = 2.5 nM, σ(2) = 0.01 μM(2)). Second, we show that an array of nanosensors can uniquely monitor weakly affined analyte interactions via the increased number of observed interactions. One application involves monitoring the metabolically induced hypermannosylation of human IgG from CHO using PSA-lectin conjugated sensor arrays where temporal glycosylation patterns are measured and compared. Finally, the array of sensors can also spatially map the local production of an analyte from cellular biosynthesis. As an example, we rank productivity of IgG-producing HEK colonies cultured directly on the array of nanosensors itself.

Collaboration


Dive into the Sebastian Kruss's collaboration.

Top Co-Authors

Avatar

Michael S. Strano

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nigel F. Reuel

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jingqing Zhang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Mu

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Daniel Meyer

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Justin T. Nelson

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge