Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastian Meller is active.

Publication


Featured researches published by Sebastian Meller.


PLOS ONE | 2014

Performance Evaluation of Kits for Bisulfite-Conversion of DNA from Tissues, Cell Lines, FFPE Tissues, Aspirates, Lavages, Effusions, Plasma, Serum, and Urine

Emily Eva Holmes; Maria Jung; Sebastian Meller; Annette Leisse; Verena Sailer; Julie Zech; Martina Mengdehl; Leif-Alexander Garbe; Barbara Uhl; Glen Kristiansen; Dimo Dietrich

DNA methylation analyses usually require a preceding bisulfite conversion of the DNA. The choice of an appropriate kit for a specific application should be based on the specific performance requirements with regard to the respective sample material. In this study, the performance of nine kits was evaluated: EpiTect Fast FFPE Bisulfite Kit, EpiTect Bisulfite Kit, EpiTect Fast DNA Bisulfite Kit (Qiagen), EZ DNA Methylation-Gold Kit, EZ DNA Methylation-Direct Kit, EZ DNA Methylation-Lightning Kit (Zymo Research), innuCONVERT Bisulfite All-In-One Kit, innuCONVERT Bisulfite Basic Kit, innuCONVERT Bisulfite Body Fluids Kit (Analytik Jena). The kit performance was compared with regard to DNA yield, DNA degradation, DNA purity, conversion efficiency, stability and handling using qPCR, UV, clone sequencing, HPLC, and agarose gel electrophoresis. All kits yielded highly pure DNA suitable for PCR analyses without PCR inhibition. Significantly higher yields were obtained when using the EZ DNA Methylation-Gold Kit and the innuCONVERT Bisulfite kits. Conversion efficiency ranged from 98.7% (EpiTect Bisulfite Kit) to 99.9% (EZ DNA Methylation-Direct Kit). The inappropriate conversion of methylated cytosines to thymines varied between 0.9% (innuCONVERT Bisulfite kits) and 2.7% (EZ DNA Methylation-Direct Kit). Time-to-result ranged from 131 min (innuCONVERT kits) to 402 min (EpiTect Bisulfite Kit). Hands-on-time was between 66 min (EZ DNA Methylation-Lightning Kit) and 104 min (EpiTect Fast FFPE and Fast DNA Bisulfite kits). Highest yields from formalin-fixed and paraffin-embedded (FFPE) tissue sections without prior extraction were obtained using the innuCONVERT Bisulfite All-In-One Kit while the EZ DNA Methylation-Direct Kit yielded DNA with only low PCR-amplifiability. The innuCONVERT Bisulfite All-In-One Kit exhibited the highest versatility regarding different input sample materials (extracted DNA, tissue, FFPE tissue, cell lines, urine sediment, and cellular fractions of bronchial aspirates, pleural effusions, ascites). The innuCONVERT Bisulfite Body Fluids Kit allowed for the analysis of 3 ml plasma, serum, ascites, pleural effusions and urine.


Critical Reviews in Clinical Laboratory Sciences | 2014

Nucleic acid-based biomarkers in body fluids of patients with urologic malignancies

Bernhard Ralla; Carsten Stephan; Sebastian Meller; Dimo Dietrich; Glen Kristiansen; Klaus Jung

Abstract This review focuses on the promising potential of nucleic acids in body fluids such as blood and urine as diagnostic, prognostic, predictive and monitoring biomarkers in urologic malignancies. The tremendous progress in the basic knowledge of molecular processes in cancer, as shown in the companion review on nucleic acid-based biomarkers in tissue of urologic tumors, provides a strong rationale for using these molecular changes as non-invasive markers in body fluids. The changes observed in body fluids are an integrative result, reflecting both tissue changes and processes occurring in the body fluids. The availability of sensitive methods has only recently made possible detailed studies of DNA- and RNA-based markers in body fluids. In addition to these biological aspects, methodological aspects of the determination of nucleic acids in body fluids, i.e. pre-analytical, analytical and post-analytical issues, are particularly emphasized. The characteristic changes of RNA (differential mRNA and miRNA expression) and DNA (concentrations, integrity index, mutations, microsatellite and methylation alterations) in serum/plasma and urine samples of patients suffering from the essential urologic cancers of the prostate, bladder, kidney and testis are summarized and critically discussed below. To translate the promising results into clinical practice, laboratory scientists and clinicians have to collaborate to resolve the challenges of harmonized and feasible pre-analytical and analytical conditions for the selected markers and to validate these markers in well-designed and sufficiently powered multi-center studies.


PLOS ONE | 2013

Improved PCR Performance Using Template DNA from Formalin-Fixed and Paraffin-Embedded Tissues by Overcoming PCR Inhibition

Dimo Dietrich; Barbara Uhl; Verena Sailer; Emily Eva Holmes; Maria Jung; Sebastian Meller; Glen Kristiansen

Formalin-fixed and paraffin-embedded (FFPE) tissues represent a valuable source for biomarker studies and clinical routine diagnostics. However, they suffer from degradation of nucleic acids due to the fixation process. Since genetic and epigenetic studies usually require PCR amplification, this degradation hampers its use significantly, impairing PCR robustness or necessitating short amplicons. In routine laboratory medicine a highly robust PCR performance is mandatory for the clinical utility of genetic and epigenetic biomarkers. Therefore, methods to improve PCR performance using DNA from FFPE tissue are highly desired and of wider interest. The effect of template DNA derived from FFPE tissues on PCR performance was investigated by means of qPCR and conventional PCR using PCR fragments of different sizes. DNA fragmentation was analyzed via agarose gel electrophoresis. This study showed that poor PCR amplification was partly caused by inhibition of the DNA polymerase by fragmented DNA from FFPE tissue and not only due to the absence of intact template molecules of sufficient integrity. This PCR inhibition was successfully minimized by increasing the polymerase concentration, dNTP concentration and PCR elongation time thereby allowing for the robust amplification of larger amplicons. This was shown for genomic template DNA as well as for bisulfite-converted template DNA required for DNA methylation analyses. In conclusion, PCR using DNA from FFPE tissue suffers from inhibition which can be alleviated by adaptation of the PCR conditions, therefore allowing for a significant improvement of PCR performance with regard to variability and the generation of larger amplicons. The presented solutions to overcome this PCR inhibition are of tremendous value for clinical chemistry and laboratory medicine.


Critical Reviews in Clinical Laboratory Sciences | 2014

Nucleic acid-based tissue biomarkers of urologic malignancies.

Dimo Dietrich; Sebastian Meller; Barbara Uhl; Bernhard Ralla; Carsten Stephan; Klaus Jung; Jörg Ellinger; Glen Kristiansen

Abstract Molecular biomarkers play an important role in the clinical management of cancer patients. Biomarkers allow estimation of the risk of developing cancer; help to diagnose a tumor, ideally at an early stage when cure is still possible; and aid in monitoring disease progression. Furthermore, they hold the potential to predict the outcome of the disease (prognostic biomarkers) and the response to therapy (predictive biomarkers). Altogether, biomarkers will help to avoid tumor-related deaths and reduce overtreatment, and will contribute to increased survival and quality of life in cancer patients due to personalized treatments. It is well established that the process of carcinogenesis is a complex interplay between genomic predisposition, acquired somatic mutations, epigenetic changes and genomic aberrations. Within this complex interplay, nucleic acids, i.e. RNA and DNA, play a fundamental role and therefore represent ideal candidates for biomarkers. They are particularly promising candidates because sequence-specific hybridization and amplification technologies allow highly accurate and sensitive assessment of these biomarker levels over a broad dynamic range. This article provides an overview of nucleic acid-based biomarkers in tissues for the management of urologic malignancies, i.e. tumors of the prostate, testis, kidney, penis, urinary bladder, renal pelvis, ureter and other urinary organs. Special emphasis is put on genomic, transcriptomic and epigenomic biomarkers (SNPs, mutations [genomic and mitochondrial], microsatellite instabilities, viral and bacterial DNA, DNA methylation and hydroxymethylation, mRNA expression, and non-coding RNAs [lncRNA, miRNA, siRNA, piRNA, snRNA, snoRNA]). Due to the multitude of published biomarker candidates, special focus is given to the general applicability of different molecular classes as biomarkers and some particularly promising nucleic acid biomarkers. Furthermore, specific challenges regarding the development and clinical implementation of nucleic acid-based biomarkers are discussed.


Oncotarget | 2016

Integration of tissue metabolomics, transcriptomics and immunohistochemistry reveals ERG- and gleason score-specific metabolomic alterations in prostate cancer

Sebastian Meller; Hellmuth-A. Meyer; Bianca Bethan; Dimo Dietrich; Sandra González Maldonado; Michael Lein; Matteo Montani; Regina Reszka; Philipp Schatz; Erik Peter; Carsten Stephan; Klaus Jung; Beate Kamlage; Glen Kristiansen

Integrated analysis of metabolomics, transcriptomics and immunohistochemistry can contribute to a deeper understanding of biological processes altered in cancer and possibly enable improved diagnostic or prognostic tests. In this study, a set of 254 metabolites was determined by gas-chromatography/liquid chromatography-mass spectrometry in matched malignant and non-malignant prostatectomy samples of 106 prostate cancer (PCa) patients. Transcription analysis of matched samples was performed on a set of 15 PCa patients using Affymetrix U133 Plus 2.0 arrays. Expression of several proteins was immunohistochemically determined in 41 matched patient samples and the association with clinico-pathological parameters was analyzed by an integrated data analysis. These results further outline the highly deregulated metabolism of fatty acids, sphingolipids and polyamines in PCa. For the first time, the impact of the ERG translocation on the metabolome was demonstrated, highlighting an altered fatty acid oxidation in TMPRSS2-ERG translocation positive PCa specimens. Furthermore, alterations in cholesterol metabolism were found preferentially in high grade tumors, enabling the cells to create energy storage. With this integrated analysis we could not only confirm several findings from previous metabolomic studies, but also contradict others and finally expand our concepts of deregulated biological pathways in PCa.


Epigenetics | 2016

CDO1 promoter methylation is associated with gene silencing and is a prognostic biomarker for biochemical recurrence-free survival in prostate cancer patients

Sebastian Meller; Zipfel L; Heidrun Gevensleben; Jörn Dietrich; Jörg Ellinger; Majores M; Johannes Stein; Sailer; Maria Jung; Glen Kristiansen; Dimo Dietrich

ABSTRACT Molecular biomarkers may facilitate the distinction between aggressive and clinically insignificant prostate cancer (PCa), thereby potentially aiding individualized treatment. We analyzed cysteine dioxygenase 1 (CDO1) promoter methylation and mRNA expression in order to evaluate its potential as prognostic biomarker. CDO1 methylation and mRNA expression were determined in cell lines and formalin-fixed paraffin-embedded prostatectomy specimens from a first cohort of 300 PCa patients using methylation-specific qPCR and qRT-PCR. Univariate and multivariate Cox proportional hazards and Kaplan-Meier analyses were performed to evaluate biochemical recurrence (BCR)-free survival. Results were confirmed in an independent second cohort comprising 498 PCa cases. Methylation and mRNA expression data from the second cohort were generated by The Cancer Genome Atlas (TCGA) Research Network by means of Infinium HumanMethylation450 BeadChip and RNASeq. CDO1 was hypermethylated in PCa compared to normal adjacent tissues and benign prostatic hyperplasia (P < 0.001) and was associated with reduced gene expression (ρ = −0.91, P = 0.005). Using two different methodologies for methylation quantification, high CDO1 methylation as continuous variable was associated with BCR in univariate analysis (first cohort: HR = 1.02, P = 0.002, 95% CI [1.01–1.03]; second cohort: HR = 1.02, P = 0.032, 95% CI [1.00–1.03]) but failed to reach statistical significance in multivariate analysis. CDO1 promoter methylation is involved in gene regulation and is a potential prognostic biomarker for BCR-free survival in PCa patients following radical prostatectomy. Further studies are needed to validate CDO1 methylation assays and to evaluate the clinical utility of CDO1 methylation for the management of PCa.


Virchows Archiv | 2014

Myoglobin expression in prostate cancer is correlated to androgen receptor expression and markers of tumor hypoxia.

Sebastian Meller; Anne Bicker; Matteo Montani; Kristian Ikenberg; Babak Rostamzadeh; Verena Sailer; Peter Wild; Dimo Dietrich; Barbara Uhl; Tullio Sulser; Holger Moch; Thomas A. Gorr; Carsten Stephan; Klaus Jung; Thomas Hankeln; Glen Kristiansen

Recent studies identified unexpected expression and transcriptional complexity of the hemoprotein myoglobin (MB) in human breast cancer but its role in prostate cancer is still unclear. Expression of MB was immunohistochemically analyzed in three independent cohorts of radical prostatectomy specimens (n = 409, n = 625, and n = 237). MB expression data were correlated with clinicopathological parameters and molecular parameters of androgen and hypoxia signaling. Expression levels of novel tumor-associated MB transcript variants and the VEGF gene as a hypoxia marker were analyzed using qRT-PCR. Fifty-three percent of the prostate cancer cases were MB positive and significantly correlated with androgen receptor (AR) expression (p < 0.001). The positive correlation with CAIX (p < 0.001) and FASN (p = 0.008) as well as the paralleled increased expression of the tumor-associated MB transcript variants and VEGF suggest that hypoxia participates in MB expression regulation. Analogous to breast cancer, MB expression in prostate cancer is associated with steroid hormone signaling and markers of hypoxia. Further studies must elucidate the novel functional roles of MB in human carcinomas, which probably extend beyond its classic intramuscular function in oxygen storage.


Oncotarget | 2016

CXCL12 promoter methylation and PD-L1 expression as prognostic biomarkers in prostate cancer patients.

Diane Goltz; Emily Eva Holmes; Heidrun Gevensleben; Verena Sailer; Jörn Dietrich; Maria Jung; Magda Röhler; Sebastian Meller; Jörg Ellinger; Glen Kristiansen; Dimo Dietrich

Background The CXCR4/CXCL12 axis plays a central role in systemic metastasis of prostate carcinoma (PCa), thereby representing a promising target for future therapies. Recent data suggest that the CXCR4/CXCL12 axis is functionally linked to the PD-1/PD-L1 immune checkpoint. We evaluated the prognostic value of aberrant CXCL12 DNA methylation with respect to PD-L1 expression in primary PCa. Results CXCL12 methylation showed a consistent significant correlation with Gleason grading groups in both cohorts (p < 0.001 for training and p = 0.034 for testing cohort). Short BCR-free survival was significantly associated with aberrant CXCL12 methylation in both cohorts and served as an independent prognostic factor in the testing cohort (hazard ratio = 1.92 [95%CI: 1.12–3.27], p = 0.049). Concomitant aberrant CXCL12 methylation and high PD-L1 expression was significantly associated with shorter BCR-free survival (p = 0.005). In comparative analysis, the CXCL12 methylation assay was able to provide approximately equivalent results in biopsy and prostatectomy specimens. Materials and Methods CXCL12 methylation was determined by means of a methylation specific quantitative PCR analysis in a radical prostatectomy patient cohort (n = 247, training cohort). Data published by The Cancer Genome Atlas served as a testing cohort (n = 498). CXCL12 methylation results were correlated to clinicopathological parameters including biochemical recurrence (BCR)-free survival. Conclusions CXCL12 methylation is a powerful prognostic biomarker for BCR in PCa patients after radical prostatectomy. Further studies need to ascertain if CXCL12 methylation may aid in planning active surveillance strategies.


PLOS ONE | 2015

The Distinct Gene Regulatory Network of Myoglobin in Prostate and Breast Cancer

Anne Bicker; Alexandra M. Brahmer; Sebastian Meller; Glen Kristiansen; Thomas A. Gorr; Thomas Hankeln

Myoglobin (MB) is not only strongly expressed in myocytes, but also at much lower levels in different cancer entities. 40% of breast tumors are MB-positive, with the globin being co-expressed with markers of tumor hypoxia in a proportion of cases. In breast cancer, MB expression is associated with a positive hormone receptor status and patient prognosis. In prostate cancer, another hormone-dependent cancer type, 53% of tumors were recently shown to express MB. Especially in more aggressive prostate cancer specimen MB expression also correlates with increased patient survival rates. Both findings might be due to tumor-suppressing properties of MB in cancer cells. In contrast to muscle, MB transcription in breast and prostate cancer mainly depends on a novel, alternative promoter site. We show here that its associated transcripts can be upregulated by hypoxia and downregulated by estrogens and androgens in MCF7 breast and LNCaP prostate cancer cells, respectively. Bioinformatic data mining of epigenetic histone marks and experimental verification reveal a hitherto uncharacterized transcriptional network that drives the regulation of the MB gene in cancer cells. We identified candidate hormone-receptor binding elements that may interact with the cancer-associated MB promoter to decrease its activity in breast and prostate cancer cells. Additionally, a regulatory element, 250 kb downstream of the promoter, acts as a hypoxia-inducible site within the transcriptional machinery. Understanding the distinct regulation of MB in tumors will improve unraveling the respiratory protein’s function in the cancer context and may provide new starting points for developing therapeutic strategies.


Oncotarget | 2017

Adipophilin as prognostic biomarker in clear cell renal cell carcinoma

Yuri Tolkach; Christine Lüders; Sebastian Meller; Klaus Jung; Carsten Stephan; Glen Kristiansen

Objective To study the expression of adipophilin (PLIN2), a lipid storage-associated cell protein, in different subtypes of renal cell cancer and to elucidate its prognostic value. Materials and Methods Two-hundred-seventy-five patients with renal cell carcinoma (RCC) were included in this study. Immunohistochemistry with a polyclonal antibody to adipophilin was used on the tissue microarray (formalin-fixed, paraffin-embedded tissue) for detection of adipophilin. Median follow-up time was 91 (range 1-159) months in the whole cohort and 100 (1-159) months for patients with clear-cell RCC. Additional validation for adipophilin was performed using publicly available gene expression data for clear cell RCC from The Cancer Genome Atlas (TCGA). Results Adipophilin expression was detected in 14.3% of papillary RCC, in 0% of chromophobe RCC and in 58.7% of clear-cell RCC in the cytoplasm or at the membrane. Only membrane expression was correlated with other clinical parameters (pT-stage, pN-stage, R-status, sex) and showed a prognostic significance in univariate analysis with regard to overall survival of patients with clear cell subtype (HR 2.90, 95% CI 1.55-5.42, p=0.001), which failed significance on multivariate analysis. mRNA expression of PLIN2 on TCGA data using best selected cut-off was prognostically significant in both univariate (HR 1.76, 95% CI 1.28-2.42, p = 0.0005) and multivariate analyses (HR 1.46, 95% CI 1.05-2.04, p = 0.0257). Conclusions Adipophilin is a novel and still understudied prognostic biomarker in clear cell renal cell carcinoma which deserves further study.

Collaboration


Dive into the Sebastian Meller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dimo Dietrich

University Hospital Bonn

View shared research outputs
Top Co-Authors

Avatar

Maria Jung

University Hospital Bonn

View shared research outputs
Top Co-Authors

Avatar

Barbara Uhl

University Hospital Bonn

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klaus Jung

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge