Sebastian N. W. Hoernstein
University of Freiburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sebastian N. W. Hoernstein.
Plant Physiology | 2014
Stefanie J. Mueller; Daniel Lang; Sebastian N. W. Hoernstein; Erika G.E. Lang; Christian Schuessele; Anton Schmidt; Melanie Fluck; Desirée Leisibach; Christina Niegl; Andreas D. Zimmer; Andreas Schlosser; Ralf Reski
Protein compartmentation in the moss Physcomitrella patens identifies the postendosymbiotic evolution of plastid and mitochondrial functions and pinpoints intercellular and intracellular organellar heterogeneity. Extant eukaryotes are highly compartmentalized and have integrated endosymbionts as organelles, namely mitochondria and plastids in plants. During evolution, organellar proteomes are modified by gene gain and loss, by gene subfunctionalization and neofunctionalization, and by changes in protein targeting. To date, proteomics data for plastids and mitochondria are available for only a few plant model species, and evolutionary analyses of high-throughput data are scarce. We combined quantitative proteomics, cross-species comparative analysis of metabolic pathways, and localizations by fluorescent proteins in the model plant Physcomitrella patens in order to assess evolutionary changes in mitochondrial and plastid proteomes. This study implements data-mining methodology to classify and reliably reconstruct subcellular proteomes, to map metabolic pathways, and to study the effects of postendosymbiotic evolution on organellar pathway partitioning. Our results indicate that, although plant morphologies changed substantially during plant evolution, metabolic integration of organelles is largely conserved, with exceptions in amino acid and carbon metabolism. Retargeting or regulatory subfunctionalization are common in the studied nucleus-encoded gene families of organelle-targeted proteins. Moreover, complementing the proteomic analysis, fluorescent protein fusions revealed novel proteins at organelle interfaces such as plastid stromules (stroma-filled tubules) and highlight microcompartments as well as intercellular and intracellular heterogeneity of mitochondria and plastids. Thus, we establish a comprehensive data set for mitochondrial and plastid proteomes in moss, present a novel multilevel approach to organelle biology in plants, and place our findings into an evolutionary context.
Protoplasma | 2012
Hannah Birke; Stefanie J. Müller; Michael Rother; Andreas D. Zimmer; Sebastian N. W. Hoernstein; Dirk Wesenberg; Markus Wirtz; Gerd-Joachim Krauss; Ralf Reski; Rüdiger Hell
In the vascular plant Arabidopsis thaliana, synthesis of cysteine and its precursors O-acetylserine and sulfide is distributed between the cytosol, chloroplasts, and mitochondria. This compartmentation contributes to regulation of cysteine synthesis. In contrast to Arabidopsis, cysteine synthesis is exclusively restricted to chloroplasts in the unicellular green alga Chlamydomonas reinhardtii. Thus, the question arises, whether specification of compartmentation was driven by multicellularity and specified organs and tissues. The moss Physcomitrella patens colonizes land but is still characterized by a simple morphology compared to vascular plants. It was therefore used as model organism to study evolution of compartmented cysteine synthesis. The presence of O-acetylserine(thiol)lyase (OAS-TL) proteins, which catalyze the final step of cysteine synthesis, in different compartments was applied as criterion. Purification and characterization of native OAS-TL proteins demonstrated the presence of five OAS-TL protein species encoded by two genes in Physcomitrella. At least one of the gene products is dual targeted to plastids and cytosol, as shown by combination of GFP fusion localization studies, purification of chloroplasts, and identification of N termini from native proteins. The bulk of OAS-TL protein is targeted to plastids, whereas there is no evidence for a mitochondrial OAS-TL isoform and only a minor part of OAS-TL protein is localized in the cytosol. This demonstrates that subcellular diversification of cysteine synthesis is already initialized in Physcomitrella but appears to gain relevance later during evolution of vascular plants.
Plant Journal | 2018
Daniel Lang; Kristian K. Ullrich; Florent Murat; Jörg Fuchs; Jerry Jenkins; Fabian B. Haas; Mathieu Piednoël; Heidrun Gundlach; Michiel Van Bel; Rabea Meyberg; Cristina Vives; Jordi Morata; Aikaterini Symeonidi; Manuel Hiss; Wellington Muchero; Yasuko Kamisugi; Omar Saleh; Guillaume Blanc; Eva L. Decker; Nico van Gessel; Jane Grimwood; Richard D. Hayes; Sean W. Graham; Lee E. Gunter; Stuart F. McDaniel; Sebastian N. W. Hoernstein; Anders Larsson; Fay-Wei Li; Pierre Francois Perroud; Jeremy Phillips
The draft genome of the moss model, Physcomitrella patens, comprised approximately 2000 unordered scaffolds. In order to enable analyses of genome structure and evolution we generated a chromosome-scale genome assembly using genetic linkage as well as (end) sequencing of long DNA fragments. We find that 57% of the genome comprises transposable elements (TEs), some of which may be actively transposing during the life cycle. Unlike in flowering plant genomes, gene- and TE-rich regions show an overall even distribution along the chromosomes. However, the chromosomes are mono-centric with peaks of a class of Copia elements potentially coinciding with centromeres. Gene body methylation is evident in 5.7% of the protein-coding genes, typically coinciding with low GC and low expression. Some giant virus insertions are transcriptionally active and might protect gametes from viral infection via siRNA mediated silencing. Structure-based detection methods show that the genome evolved via two rounds of whole genome duplications (WGDs), apparently common in mosses but not in liverworts and hornworts. Several hundred genes are present in colinear regions conserved since the last common ancestor of plants. These syntenic regions are enriched for functions related to plant-specific cell growth and tissue organization. The P. patens genome lacks the TE-rich pericentromeric and gene-rich distal regions typical for most flowering plant genomes. More non-seed plant genomes are needed to unravel how plant genomes evolve, and to understand whether the P. patens genome structure is typical for mosses or bryophytes.
Molecular & Cellular Proteomics | 2016
Sebastian N. W. Hoernstein; Stefanie J. Mueller; Kathrin Fiedler; Marc Schuelke; Jens T. Vanselow; Christian Schuessele; Daniel Lang; Roland Nitschke; Gabor L. Igloi; Andreas Schlosser; Ralf Reski
Protein arginylation is a posttranslational modification of both N-terminal amino acids of proteins and sidechain carboxylates and can be crucial for viability and physiology in higher eukaryotes. The lack of arginylation causes severe developmental defects in moss, affects the low oxygen response in Arabidopsis thaliana and is embryo lethal in Drosophila and in mice. Although several studies investigated impact and function of the responsible enzyme, the arginyl-tRNA protein transferase (ATE) in plants, identification of arginylated proteins by mass spectrometry was not hitherto achieved. In the present study, we report the identification of targets and interaction partners of ATE in the model plant Physcomitrella patens by mass spectrometry, employing two different immuno-affinity strategies and a recently established transgenic ATE:GUS reporter line (Schuessele et al., 2016 New Phytol., DOI: 10.1111/nph.13656). Here we use a commercially available antibody against the fused reporter protein (β-glucuronidase) to pull down ATE and its interacting proteins and validate its in vivo interaction with a class I small heatshock protein via Förster resonance energy transfer (FRET). Additionally, we apply and modify a method that already successfully identified arginylated proteins from mouse proteomes by using custom-made antibodies specific for N-terminal arginine. As a result, we identify four arginylated proteins from Physcomitrella patens with high confidence. Data are available via ProteomeXchange with identifier PXD003228 and PXD003232.
Journal of The American Society of Nephrology | 2017
Stefan Michelfelder; Juliana Parsons; Lennard L. Bohlender; Sebastian N. W. Hoernstein; Holger Niederkrüger; Andreas Busch; Nicola Krieghoff; J.H. Koch; Benjamin Fode; Andreas Schaaf; Thomas Frischmuth; Martin Pohl; Peter F. Zipfel; Ralf Reski; Eva L. Decker; Karsten Häffner
Genetic defects in complement regulatory proteins can lead to severe renal diseases, including atypical hemolytic uremic syndrome and C3 glomerulopathies, and age-related macular degeneration. The majority of the mutations found in patients with these diseases affect the glycoprotein complement factor H, the main regulator of the alternative pathway of complement activation. Therapeutic options are limited, and novel treatments, specifically those targeting alternative pathway activation, are highly desirable. Substitution with biologically active factor H could potentially treat a variety of diseases that involve increased alternative pathway activation, but no therapeutic factor H is commercially available. We recently reported the expression of full-length recombinant factor H in moss (Physcomitrella patens). Here, we present the production of an improved moss-derived recombinant human factor H devoid of potentially immunogenic plant-specific sugar residues on protein N-glycans, yielding approximately 1 mg purified moss-derived human factor H per liter of initial P. patens culture after a multistep purification process. This glycosylation-optimized factor H showed full in vitro complement regulatory activity similar to that of plasma-derived factor H and efficiently blocked LPS-induced alternative pathway activation and hemolysis induced by sera from patients with atypical hemolytic uremic syndrome. Furthermore, injection of moss-derived factor H reduced C3 deposition and increased serum C3 levels in a murine model of C3 glomerulopathy. Thus, we consider moss-produced recombinant human factor H a promising pharmaceutical product for therapeutic intervention in patients suffering from complement dysregulation.
Mitochondrion | 2017
Stefanie J. Mueller; Sebastian N. W. Hoernstein; Ralf Reski
Extant basal land plants are routinely used to trace plant evolution and to track strategies for high abiotic stress resistance. Whereas the structure of mitochondrial genomes and RNA editing are already well studied, mitochondrial proteome research is restricted to a few data sets. While the mitochondrial proteome of the model moss Physcomitrella patens is covered to an estimated 15-25% by proteomic evidence to date, the available data have already provided insights into the evolution of metabolic compartmentation, dual targeting and mitochondrial heterogeneity. This review summarizes the current knowledge about the mitochondrial proteome of P. patens, and gives a perspective on its use as a mitochondrial model system. Its amenability to gene editing, metabolic labelling as well as fluorescence microscopy provides a unique platform to study open questions in mitochondrial biology, such as regulation of protein stability, responses to stress and connectivity to other organelles. Future challenges will include improving the proteomic resources for P. patens, and to link protein inventories and modifications as well as evolutionary differences to the functional level.
Methods of Molecular Biology | 2017
Stefanie J. Mueller; Sebastian N. W. Hoernstein; Ralf Reski
The function of subcellular structures is defined by their specific sets of proteins, making subcellular protein localization one of the most important topics in organelle research. To date, many organelle proteomics workflows involve the (partial) purification of the desired subcellular structure and the subsequent analysis of the proteome using tandem mass spectrometry (MS/MS). This chapter gives an overview of the methods that have been used to assay the purity and enrichment of subcellular structures, with an emphasis on quantitative proteomics using differently enriched subcellular fractions. We introduce large-scale-based criteria for assignment of proteins to subcellular structures and describe in detail the use of 15N metabolic labeling in moss to characterize plastid and mitochondrial proteomes.
Journal of Proteome Research | 2018
Sebastian N. W. Hoernstein; Benjamin Fode; Gertrud Wiedemann; Daniel Lang; Holger Niederkrueger; Birgit Berg; Andreas Schaaf; Thomas Frischmuth; Andreas Schlosser; Eva L. Decker; Ralf Reski
Host cell proteins are inevitable contaminants of biopharmaceuticals. Here, we performed detailed analyses of the host cell proteome of moss ( Physcomitrella patens) bioreactor supernatants using mass spectrometry and subsequent bioinformatics analysis. Distinguishing between the apparent secretome and intracellular contaminants, a complex extracellular proteolytic network including subtilisin-like proteases, metallo-proteases, and aspartic proteases was identified. Knockout of a subtilisin-like protease affected the overall extracellular proteolytic activity. Besides proteases, also secreted protease-inhibiting proteins such as serpins were identified. Further, we confirmed predicted cleavage sites of 40 endogenous signal peptides employing an N-terminomics approach. The present data provide novel aspects to optimize both product stability of recombinant biopharmaceuticals as well as their maturation along the secretory pathway. Data are available via ProteomeXchange with identifier PXD009517.
FEBS Journal | 2018
Marina Toplak; Gertrud Wiedemann; Jelena Ulićević; Bastian Daniel; Sebastian N. W. Hoernstein; Jennifer Kothe; Johannes Niederhauser; Ralf Reski; Andreas Winkler; Peter Macheroux
The berberine bridge enzyme from the California poppy Eschscholzia californica (EcBBE) catalyzes the oxidative cyclization of (S)‐reticuline to (S)‐scoulerine, that is, the formation of the berberine bridge in the biosynthesis of benzylisoquinoline alkaloids. Interestingly, a large number of BBE‐like genes have been identified in plants that lack alkaloid biosynthesis. This finding raised the question of the primordial role of BBE in the plant kingdom, which prompted us to investigate the closest relative of EcBBE in Physcomitrella patens (PpBBE1), the most basal plant harboring a BBE‐like gene. Here, we report the biochemical, structural, and in vivo characterization of PpBBE1. Our studies revealed that PpBBE1 is structurally and biochemically very similar to EcBBE. In contrast to EcBBE, we found that PpBBE1 catalyzes the oxidation of the disaccharide cellobiose to the corresponding lactone, that is, PpBBE1 is a cellobiose oxidase. The enzymatic reaction mechanism was characterized by a structure‐guided mutagenesis approach that enabled us to assign a catalytic role to amino acid residues in the active site of PpBBE1. In vivo experiments revealed the highest level of PpBBE1 expression in chloronema, the earliest stage of the plants life cycle, where carbon metabolism is strongly upregulated. It was also shown that the enzyme is secreted to the extracellular space, where it may be involved in later steps of cellulose degradation, thereby allowing the moss to make use of cellulose for energy production. Overall, our results suggest that the primordial role of BBE‐like enzymes in plants revolved around primary metabolic reactions in carbohydrate utilization.
Plant Cell Reports | 2011
Erika G.E. Lang; Stefanie J. Mueller; Sebastian N. W. Hoernstein; Joanna Porankiewicz-Asplund; Marco Vervliet-Scheebaum; Ralf Reski