Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastian Seitz is active.

Publication


Featured researches published by Sebastian Seitz.


Cell Metabolism | 2010

Glucocorticoids Suppress Bone Formation by Attenuating Osteoblast Differentiation via the Monomeric Glucocorticoid Receptor

Alexander Rauch; Sebastian Seitz; Ulrike Baschant; Arndt F. Schilling; Anett Illing; Brenda D. Stride; Milen Kirilov; Vice Mandic; Andrea Takacz; Ruth Schmidt-Ullrich; Susanne Ostermay; Thorsten Schinke; Rainer Spanbroek; Mario M. Zaiss; Peter Angel; Ulf H. Lerner; Jean-Pierre David; Holger M. Reichardt; Michael Amling; Günther Schütz; Jan Tuckermann

Development of osteoporosis severely complicates long-term glucocorticoid (GC) therapy. Using a Cre-transgenic mouse line, we now demonstrate that GCs are unable to repress bone formation in the absence of glucocorticoid receptor (GR) expression in osteoblasts as they become refractory to hormone-induced apoptosis, inhibition of proliferation, and differentiation. In contrast, GC treatment still reduces bone formation in mice carrying a mutation that only disrupts GR dimerization, resulting in bone loss in vivo, enhanced apoptosis, and suppressed differentiation in vitro. The inhibitory GC effects on osteoblasts can be explained by a mechanism involving suppression of cytokines, such as interleukin 11, via interaction of the monomeric GR with AP-1, but not NF-kappaB. Thus, GCs inhibit cytokines independent of GR dimerization and thereby attenuate osteoblast differentiation, which accounts, in part, for bone loss during GC therapy.


Nature Medicine | 2009

Impaired gastric acidification negatively affects calcium homeostasis and bone mass.

Thorsten Schinke; Arndt F. Schilling; Anke Baranowsky; Sebastian Seitz; Robert P. Marshall; Tilman Linn; Michael Blaeker; Antje K. Huebner; Ansgar Schulz; Ronald Simon; Matthias Gebauer; Matthias Priemel; Uwe Kornak; Sandra Perkovic; Florian Barvencik; F. Timo Beil; Andrea Del Fattore; Annalisa Frattini; Thomas Streichert; Klaus Pueschel; Anna Villa; Klaus-Michael Debatin; Johannes M. Rueger; Anna Teti; Jozef Zustin; Guido Sauter; Michael Amling

Activation of osteoclasts and their acidification-dependent resorption of bone is thought to maintain proper serum calcium levels. Here we show that osteoclast dysfunction alone does not generally affect calcium homeostasis. Indeed, mice deficient in Src, encoding a tyrosine kinase critical for osteoclast activity, show signs of osteopetrosis, but without hypocalcemia or defects in bone mineralization. Mice deficient in Cckbr, encoding a gastrin receptor that affects acid secretion by parietal cells, have the expected defects in gastric acidification but also secondary hyperparathyroidism and osteoporosis and modest hypocalcemia. These results suggest that alterations in calcium homeostasis can be driven by defects in gastric acidification, especially given that calcium gluconate supplementation fully rescues the phenotype of the Cckbr-mutant mice. Finally, mice deficient in Tcirg1, encoding a subunit of the vacuolar proton pump specifically expressed in both osteoclasts and parietal cells, show hypocalcemia and osteopetrorickets. Although neither Src- nor Cckbr-deficient mice have this latter phenotype, the combined deficiency of both genes results in osteopetrorickets. Thus, we find that osteopetrosis and osteopetrorickets are distinct phenotypes, depending on the site or sites of defective acidification (pages 610–612).


Journal of Bone and Mineral Research | 2009

Paget's Disease of Bone: Histologic Analysis of 754 Patients

Sebastian Seitz; Matthias Priemel; Jozef Zustin; F. Timo Beil; Jutta Semler; Helmut W. Minne; Thorsten Schinke; Michael Amling

Although Pagets disease of bone (PDB) is the second most common metabolic bone disease, to our knowledge, there is only one quantitative analysis on the histological and especially on the histomorphometric level. Therefore, the aim of this study was to analyze, on the basis of the Hamburg Bone Register, PBD in terms of incidence, skeletal distribution, malignant transformation, and histological and histomorphometric characteristics. Bone biopsies and patient files of 754 cases with histologically proven PDB were reviewed in a retrospective study. Quantitative static histomorphometry was performed on a representative subgroup of 247 biopsies derived from patients with manifestation of PDB at the iliac crest and compared with an age‐ and sex‐matched control group. The peak incidence of PDB was between 70 and 80 yr of age. The majority of monostotic skeletal manifestation was localized at the os ilium, followed by the spine and femur. Histomorphometric results showed a high bone turnover with a significant increase in bone resorption and bone formation indices leading to an increased bone volume. Paget sarcoma was diagnosed in 6 of 754 patients, indicating a malignant transformation in 0.8% of the affected patients. Taken together, our study characterizes PDB in Germany on the basis of one of the largest cohorts of patients with histologically proven PDB. Moreover, for the first time, a quantitative histomorphometric approach was taken for >200 cases, where we could show local high bone mass lesions as a result of an increase of both osteoclast and osteoblast indices.


PLOS ONE | 2010

The Clock Genes Period 2 and Cryptochrome 2 Differentially Balance Bone Formation

Erik Maronde; Arndt F. Schilling; Sebastian Seitz; Thorsten Schinke; Isabelle Schmutz; Gijsbertus T. J. van der Horst; Michael Amling; Urs Albrecht

BACKGROUND Clock genes and their protein products regulate circadian rhythms in mammals but have also been implicated in various physiological processes, including bone formation. Osteoblasts build new mineralized bone whereas osteoclasts degrade it thereby balancing bone formation. To evaluate the contribution of clock components in this process, we investigated mice mutant in clock genes for a bone volume phenotype. METHODOLOGY/PRINCIPAL FINDINGS We found that Per2(Brdm1) mutant mice as well as mice lacking Cry2(-/-) displayed significantly increased bone volume at 12 weeks of age, when bone turnover is high. Per2(Brdm1) mutant mice showed alterations in parameters specific for osteoblasts whereas mice lacking Cry2(-/-) displayed changes in osteoclast specific parameters. Interestingly, inactivation of both Per2 and Cry2 genes leads to normal bone volume as observed in wild type animals. Importantly, osteoclast parameters affected due to the lack of Cry2, remained at the level seen in the Cry2(-/-) mutants despite the simultaneous inactivation of Per2. CONCLUSIONS/SIGNIFICANCE This indicates that Cry2 and Per2 affect distinct pathways in the regulation of bone volume with Cry2 influencing mostly the osteoclastic cellular component of bone and Per2 acting on osteoblast parameters.


Acta Biomaterialia | 2010

Effects of strontium ranelate administration on bisphosphonate-altered hydroxyapatite: Matrix incorporation of strontium is accompanied by changes in mineralization and microstructure

B. Jobke; Michael Hahn; Matthias Priemel; Manfred Niecke; Sebastian Seitz; Jozef Zustin; Jutta Semler; Michael Amling

Strontium ranelate (SR) is one therapeutic option for reducing risk of fracture in osteoporosis. The effects of SR treatment on hydroxyapatite (HA) previously altered by bisphosphonate (BP) administration remain to be established. Patients who have received long-term BP treatment and present with persistent high fracture risk are of particular interest. Paired iliac crest biopsies from 15 patients post-BP therapy were subjected to a baseline biopsy and a follow-up biopsy after treatment with 2g SR day⁻¹ after either 6 months (n=5) or 12 months (n=10). Dual energy X-ray absorptiometry scans, serum parameters and biochemical markers were obtained. Quantitative backscattered electron imaging and energy-dispersive X-ray analyses combined with micro-X-ray fluorescence determinations were performed to observe any mineralization changes. Static 2-D histomorphometry was carried out to evaluate cellular and structural indices. After 6 months of SR treatment, increases in osteoid surface and strontium content were observed, but no other indices showed significant change. After 12 months of SR treatment, there was a significant increase in bone volume and trabecular thickness, and further increases in strontium content and backscattered signal intensity. These structural changes were accompanied by increased numbers of osteoblasts and increased osteoid surface and volume. Additionally, low bone resorption, as measured by beta-cross-laps, and a low number of osteoclasts were observed. SR treatment led to increased strontium content within the BP-HA nanocomposites and to increased osteoid indices and bone volume, which is indicative of newly formed bone, while osteoclasts were still suppressed. These data points suggest that SR might be considered as a therapeutic option for patients following long-term BP treatment.


Tissue Engineering Part C-methods | 2008

Validation of a Femoral Critical Size Defect Model for Orthotopic Evaluation of Bone Healing: A Biomechanical, Veterinary and Trauma Surgical Perspective

Inga Drosse; Elias Volkmer; Sebastian Seitz; Hermann Seitz; Rainer Penzkofer; Klaus Zahn; Ulrike Matis; W. Mutschler; Peter Augat; Matthias Schieker

Numerous in vivo studies have been conducted to investigate bone regeneration in orthotopic defect models, but a reliably standardized critical-size defect (CSD) model in small animals is still lacking in tissue-engineering research. Utilizing the expertise of trauma surgeons, veterinary surgeons, and engineers, we evaluated the optimal fixation strategy for in vivo application in terms of surgical suitability and conducted biomechanical studies for 3 fixation devices. Fixation strategies were an external fixation device made of polymethylmethacrylate, widely used in animal care; a self-constructed external clamp-fixation device, designed and manufactured using rapid prototyping techniques; and commercially available 1.2-mm titanium plates used in hand surgery. The CSD was 6 mm in size. Biomechanical testing included compression, 4-point bending, and torsion tests. The surgical procedure was optimized in vitro and validated in a clinical setting in athymic rats in vivo. Despite differences in the results of the biomechanical tests, all fixation devices tested proved suitable for the intended purpose. In conclusion, the evaluated model for stabilizing a CSD in a rats femur can reliably be used for standardized bone regeneration studies in small animals.


Journal of Orthopaedic Research | 2010

BMP-7-induced ectopic bone formation and fracture healing is impaired by systemic NSAID application in C57BL/6-mice.

Alexander S. Spiro; F. Timo Beil; Anke Baranowsky; Florian Barvencik; Arndt F. Schilling; Khoa Nguyen; Shahram Khadem; Sebastian Seitz; Johannes M. Rueger; Thorsten Schinke; Michael Amling

Nonsteroidal antiinflammatory drugs (NSAIDs) are known to potentially impair the fracture healing process. The aim of the present study was to determine if the impairment of bone healing by systemic NSAID application is, at least in part, due to an interaction of NSAIDs with the bone anabolic BMP‐7 pathway. Therefore, we first analyzed fracture healing in control and diclofenac‐treated mice, where we not only found a significant impairment of fracture healing due to diclofenac treatment as assessed by biomechanical testing and µCT imaging, but also found high coexpression of bone morphogenetic protein‐7 (BMP‐7) and cyclooxygenase‐2 (COX‐2) within the fracture callus of both groups. To experimentally address the possible interaction between BMP‐7 and COX‐2, we then induced ectopic bone formation in control (n = 10) and diclofenac‐treated mice (n = 10) by application of BMP‐7 (recombinant human OP‐1, rhOP‐1) into the hamstring muscles. After 20 days of treatment, each ectopic bone nodule was analyzed by contact‐radiography, µCT, histology, and histomorphometry. Diclofenac application decreased the trabecular number and bone mass in the ectopic bone nodules significantly due to reduced osteoblast number and activity. These data demonstrate that the bone anabolic effect of BMP‐7 and fracture healing is impaired by diclofenac application, and suggest that the potential negative impact of NSAIDs on fracture healing is, at least in part, due to interference with BMP‐7 signaling.


PLOS ONE | 2010

Negative regulation of bone formation by the transmembrane Wnt antagonist Kremen-2.

Jochen Schulze; Sebastian Seitz; Hiroaki Saito; Michael Schneebauer; Robert P. Marshall; Anke Baranowsky; Bjoern Busse; Arndt F. Schilling; Felix W. Friedrich; Joachim Albers; Alexander S. Spiro; Jozef Zustin; Thomas Streichert; Kristina Ellwanger; Christof Niehrs; Michael Amling; Roland Baron; Thorsten Schinke

Wnt signalling is a key pathway controlling bone formation in mice and humans. One of the regulators of this pathway is Dkk1, which antagonizes Wnt signalling through the formation of a ternary complex with the transmembrane receptors Krm1/2 and Lrp5/6, thereby blocking the induction of Wnt signalling by the latter ones. Here we show that Kremen-2 (Krm2) is predominantly expressed in bone, and that its osteoblast-specific over-expression in transgenic mice (Col1a1-Krm2) results in severe osteoporosis. Histomorphometric analysis revealed that osteoblast maturation and bone formation are disturbed in Col1a1-Krm2 mice, whereas bone resorption is increased. In line with these findings, primary osteoblasts derived from Col1a1-Krm2 mice display a cell-autonomous differentiation defect, impaired canonical Wnt signalling and decreased production of the osteoclast inhibitory factor Opg. To determine whether the observed effects of Krm2 on bone remodeling are physiologically relevant, we analyzed the skeletal phenotype of 24 weeks old Krm2-deficient mice and observed high bone mass caused by a more than three-fold increase in bone formation. Taken together, these data identify Krm2 as a regulator of bone remodeling and raise the possibility that antagonizing KRM2 might prove beneficial in patients with bone loss disorders.


Osteoporosis International | 2011

Skeletal mineralization defects in adult hypophosphatasia—a clinical and histological analysis

Florian Barvencik; F. Timo Beil; Matthias Gebauer; Till Koehne; Sebastian Seitz; Jozef Zustin; Pia Pogoda; Thorsten Schinke; Michael Amling

SummaryHistomorphometry and quantitative backscattered electron microscopy of iliac crest biopsies from patients with adult hypophosphatasia not only confirmed the expected enrichment of non-mineralized osteoid, but also demonstrated an altered trabecular microarchitecture, an increased number of osteoblasts, and an impaired calcium distribution within the mineralized bone matrix.IntroductionAdult hypophosphatasia is an inherited disorder of bone metabolism caused by inactivating mutations of the ALPL gene, encoding tissue non-specific alkaline phosphatase. While it is commonly accepted that the increased fracture risk of the patients is the consequence of osteomalacia, there are only few studies describing a complete histomorphometric analysis of bone biopsies from affected individuals. Therefore, we analyzed iliac crest biopsies from eight patients and set them in direct comparison to biopsies from healthy donors or from individuals with other types of osteomalacia.MethodsHistomorphometric analysis was performed on non-decalcified sections stained either after von Kossa/van Gieson or with toluidine blue. Bone mineral density distribution was quantified by backscattered electron microscopy.ResultsBesides the well-documented enrichment of non-mineralized bone matrix in individuals suffering from adult hypophosphatasia, our histomorphometric analysis revealed alterations of the trabecular microarchitecture and an increased number of osteoblasts compared to healthy controls or to individuals with other types of osteomalacia. Moreover, the analysis of the mineralized bone matrix revealed significantly decreased calcium content in patients with adult hypophosphatasia.ConclusionsTaken together, our data show that adult hypophosphatasia does not solely result in an enrichment of osteoid, but also in a considerable degradation of bone quality, which might contribute to the increased fracture risk of the affected individuals.


Journal of Trauma-injury Infection and Critical Care | 2010

Effects of Estrogen on Fracture Healing in Mice

Frank Timo Beil; Florian Barvencik; Matthias Gebauer; Sebastian Seitz; Johannes M. Rueger; Anita Ignatius; Pia Pogoda; Thorsten Schinke; Michael Amling

BACKGROUND Fracture healing is a complex and sequential process. One important step in fracture healing is callus remodeling. Estrogen deficiency is known to increase osteoclast bone resorption, whereas estrogen replacement can reverse this effect. Therefore, the aim of our study was to analyze whether estrogen deficiency and estrogen treatment, respectively, would affect callus remodeling in the fracture healing process. METHODS Standardized femoral fractures were produced in 10 weeks old C57BL/6 mice using a guillotine-like fracture device. Mice were separated into three groups. The first group obtained a continuous administration of estrogen. Ovariectomy (OVX) was performed in the second group to generate an estrogen-deficiency model. The control group obtained no special treatment. At different stages of fracture healing, contact X-ray, micro-computed tomography, histologic, and biomechanical analyses were performed. RESULTS We observed that, in early stages of fracture healing, OVX leads to an impaired periosteal callus formation. When compared with the control group, chondrocytes area was decreased, and the subsequent mineralization was less distinctive. In the late stage of fracture healing, the OVX mice showed a thin and porous cortex. In sharp contrast, estrogen treatment led to an enhanced fracture healing. Chondrocyte areas were larger, callus mineralization was increased, and the neocortex was thicker. Biomechanical testing confirmed the beneficial effects of estrogen on restoration of biomechanical competence. CONCLUSION These results indicate that estrogen seems to be an important factor in all stages of fracture healing. The application of estrogens enhances fracture healing of long bones at least in mice.

Collaboration


Dive into the Sebastian Seitz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge