Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastian Stolzenberg is active.

Publication


Featured researches published by Sebastian Stolzenberg.


Nature | 2015

Transport domain unlocking sets the uptake rate of an aspartate transporter

Nurunisa Akyuz; Elka R. Georgieva; Zhou Zhou; Sebastian Stolzenberg; Michel A. Cuendet; George Khelashvili; Roger B. Altman; Daniel S. Terry; Jack H. Freed; Harel Weinstein; Olga Boudker; Scott C. Blanchard

Glutamate transporters terminate neurotransmission by clearing synaptically released glutamate from the extracellular space, allowing repeated rounds of signalling and preventing glutamate-mediated excitotoxicity. Crystallographic studies of a glutamate transporter homologue from the archaeon Pyrococcus horikoshii, GltPh, showed that distinct transport domains translocate substrates into the cytoplasm by moving across the membrane within a central trimerization scaffold. Here we report direct observations of these ‘elevator-like’ transport domain motions in the context of reconstituted proteoliposomes and physiological ion gradients using single-molecule fluorescence resonance energy transfer (smFRET) imaging. We show that GltPh bearing two mutations introduced to impart characteristics of the human transporter exhibits markedly increased transport domain dynamics, which parallels an increased rate of substrate transport, thereby establishing a direct temporal relationship between transport domain motion and substrate uptake. Crystallographic and computational investigations corroborated these findings by revealing that the ‘humanizing’ mutations favour structurally ‘unlocked’ intermediate states in the transport cycle exhibiting increased solvent occupancy at the interface between the transport domain and the trimeric scaffold.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Chloride binding site of neurotransmitter sodium symporters.

Adriana K. Kantcheva; Matthias Quick; Lei Shi; Anne-Marie Lund Winther; Sebastian Stolzenberg; Harel Weinstein; Jonathan A. Javitch; Poul Nissen

Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs have a serine. The LeuT-E290S mutant displays chloride-dependent activity. We show that, in LeuT-E290S cocrystallized with bromide or chloride, the anion is coordinated by side chain hydroxyls from Tyr47, Ser290, and Thr254 and the side chain amide of Gln250. The bound anion and the nearby sodium ion in the Na1 site organize a connection between their coordinating residues and the extracellular gate of LeuT through a continuous H-bond network. The specific insights from the structures, combined with results from substrate binding studies and molecular dynamics simulations, reveal an anion-dependent occlusion mechanism for NSS and shed light on the functional role of chloride binding.


Journal of Physical Chemistry B | 2012

Structural intermediates in a model of the substrate translocation path of the bacterial glutamate transporter homologue GltPh.

Sebastian Stolzenberg; George Khelashvili; Harel Weinstein

Excitatory amino acid transporters (EAATs) are membrane proteins responsible for reuptake of glutamate from the synaptic cleft to terminate neurotransmission and help prevent neurotoxically high, extracellular glutamate concentrations. Important structural information about these proteins emerged from crystal structures of GltPh, a bacterial homologue of EAATs, in conformations facing outward and inward. These remarkably different conformations are considered to be end points of the substrate translocation path (STP), suggesting that the transport mechanism involves major conformational rearrangements that remain uncharted. To investigate possible steps in the structural transitions of the STP between the two end-point conformations, we applied a combination of computational modeling methods (motion planning, molecular dynamics simulations, and mixed elastic network models). We found that the conformational changes in the transition involve mainly the repositioning the “transport domain” and the “trimerization domain” identified previously in the crystal structures. The two domains move in opposite directions along the membrane normal, and the transport domain also tilts by ∼17° with respect to this axis. Moreover, the TM3–4 loop undergoes a flexible, “restraining bar”-like conformational change with respect to the transport domain. As a consequence of these conformational rearrangements along the transition path we calculated a significant decrease of nearly 20% in the area of the transport-to-trimerization domain interface (TTDI). Water penetrates parts of the TTDI in the modeled intermediates but very much less in the end-point conformations. We show that these characteristics of the modeled intermediate states agree with experimental results from residue-accessibility studies in individual monomers and identify specific residues that can be used to test the proposed STP. Moreover, MD simulations of complete GltPh trimers constructed from initially identical monomer intermediates suggest that asymmetry can appear in the trimer, consonant with available experimental data showing independent transport kinetics by individual monomers in the trimers.


Journal of Biological Chemistry | 2015

Mechanism of the Association between Na+ Binding and Conformations at the Intracellular Gate in Neurotransmitter:Sodium Symporters

Sebastian Stolzenberg; Matthias Quick; Chunfeng Zhao; Kamil Gotfryd; George Khelashvili; Ulrik Gether; Claus J. Loland; Jonathan A. Javitch; Sergei Y. Noskov; Harel Weinstein; Lei Shi

Background: The intramolecular pathways propagating the impact of Na+ binding in neurotransmitter:sodium symporters (NSSs) are not sufficiently understood. Results: We identified computationally and verified experimentally an interaction network connecting Na+ binding with the intracellular gate. Conclusion: The identified pathways are conserved between bacterial LeuT and eukaryotic hDAT. Significance: We gain a new understanding of the structural basis for the functional role of Na+ binding in NSSs. Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by Na+-dependent reuptake of released neurotransmitters. Previous studies suggested that Na+-binding reconfigures dynamically coupled structural elements in an allosteric interaction network (AIN) responsible for function-related conformational changes, but the intramolecular pathway of this mechanism has remained uncharted. We describe a new approach for the modeling and analysis of intramolecular dynamics in the bacterial NSS homolog LeuT. From microsecond-scale molecular dynamics simulations and cognate experimental verifications in both LeuT and human dopamine transporter (hDAT), we apply the novel method to identify the composition and the dynamic properties of their conserved AIN. In LeuT, two different perturbations disrupting Na+ binding and transport (i.e. replacing Na+ with Li+ or the Y268A mutation at the intracellular gate) affect the AIN in strikingly similar ways. In contrast, other mutations that affect the intracellular gate (i.e. R5A and D369A) do not significantly impair Na+ cooperativity and transport. Our analysis shows these perturbations to have much lesser effects on the AIN, underscoring the sensitivity of this novel method to the mechanistic nature of the perturbation. Notably, this set of observations holds as well for hDAT, where the aligned Y335A, R60A, and D436A mutations also produce different impacts on Na+ dependence. Thus, the detailed AIN generated from our method is shown to connect Na+ binding with global conformational changes that are critical for the transport mechanism. That the AIN between the Na+ binding sites and the intracellular gate in bacterial LeuT resembles that in eukaryotic hDAT highlights the conservation of allosteric pathways underlying NSS function.


Frontiers in Immunology | 2017

Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation

Marek Wieczorek; Esam T. Abualrous; Jana Sticht; Miguel Álvaro-Benito; Sebastian Stolzenberg; Frank Noé; Christian Freund

Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell’s own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors—tapasin for class I and HLA-DM for class II—contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity.


Biochimica et Biophysica Acta | 2016

Computational approaches to detect allosteric pathways in transmembrane molecular machines

Sebastian Stolzenberg; Mayako Michino; Michael V. LeVine; Harel Weinstein; Lei Shi

Many of the functions of transmembrane proteins involved in signal processing and transduction across the cell membrane are determined by allosteric couplings that propagate the functional effects well beyond the original site of activation. Data gathered from breakthroughs in biochemistry, crystallography, and single molecule fluorescence have established a rich basis of information for the study of molecular mechanisms in the allosteric couplings of such transmembrane proteins. The mechanistic details of these couplings, many of which have therapeutic implications, however, have only become accessible in synergy with molecular modeling and simulations. Here, we review some recent computational approaches that analyze allosteric coupling networks (ACNs) in transmembrane proteins, and in particular the recently developed Protein Interaction Analyzer (PIA) designed to study ACNs in the structural ensembles sampled by molecular dynamics simulations. The power of these computational approaches in interrogating the functional mechanisms of transmembrane proteins is illustrated with selected examples of recent experimental and computational studies pursued synergistically in the investigation of secondary active transporters and GPCRs. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.


Journal of Biological Chemistry | 2015

Substrate-induced unlocking of the inner gate determines the catalytic efficiency of a neurotransmitter:sodium symporter

Christian B. Billesbølle; Mie Barthold Krüger; Lei Shi; Matthias Quick; Zheng Li; Sebastian Stolzenberg; Julie Kniazeff; Kamil Gotfryd; Jonas S. Mortensen; Jonathan A. Javitch; Harel Weinstein; Claus J. Loland; Ulrik Gether

Background: The mechanism coupling substrate binding to transport in neurotransmitter: sodium symporters (NSSs) is poorly understood. Results: Site-directed fluorescence quenching spectroscopy experiments on the NSS homologue LeuT reveal a structural intermediate preceding transition to the inward-open conformation. Conclusion: Stability of the intermediate might represent a rate-limiting barrier in the transport mechanism. Significance: The data add to our mechanistic understanding of Na+-coupled transport across lipid bilayers. Neurotransmitter:sodium symporters (NSSs) mediate reuptake of neurotransmitters from the synaptic cleft and are targets for several therapeutics and psychostimulants. The prokaryotic NSS homologue, LeuT, represents a principal structural model for Na+-coupled transport catalyzed by these proteins. Here, we used site-directed fluorescence quenching spectroscopy to identify in LeuT a substrate-induced conformational rearrangement at the inner gate conceivably leading to formation of a structural intermediate preceding transition to the inward-open conformation. The substrate-induced, Na+-dependent change required an intact primary substrate-binding site and involved increased water exposure of the cytoplasmic end of transmembrane segment 5. The findings were supported by simulations predicting disruption of an intracellular interaction network leading to a discrete rotation of transmembrane segment 5 and the adjacent intracellular loop 2. The magnitude of the spectroscopic response correlated inversely with the transport rate for different substrates, suggesting that stability of the intermediate represents an unrecognized rate-limiting barrier in the NSS transport mechanism.


Molecular Pharmacology | 2011

A Dynamic Model of Membrane-Bound Phospholipase Cβ2 Activation by Gβγ Subunits

Daniel S. Han; Urszula Golebiewska; Sebastian Stolzenberg; Suzanne Scarlata; Harel Weinstein

Phospholipase C (PLC) β2, a well studied member of the family of enzymes that catalyze the hydrolysis of the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) into secondary messengers, can be activated by the Gβγ subunits of heterotrimeric G-proteins in a manner that depends on the presence and composition of the associated phospholipid membrane surface. The N-terminal pleckstrin homology (PH) domain of PLCβ2 mediates both the response to Gβγ and membrane binding, but how these interactions are coupled to yield an activated catalytic core remains unknown. Here we propose a mechanism based on molecular models of truncated PLCβ2 in its activated form complexed with Gβγ and in the catalytically inactive/membrane-bound form, obtained with the application of protein-protein docking algorithms and coarse-grained molecular dynamics simulations. These models were probed experimentally, and the inferences were confirmed by results from a combination of molecular biology and fluorescence assays. Results from the dynamic simulations of the molecular models and their interactions with various lipid bilayers identify the determinants of PLCβ2-PH domain specificity for Gβγ and lipid membranes and suggest a mechanism for the previously reported dependence of Gβγ activation on the associated membrane composition. Together, these findings explain the roles of the different activators in terms of their effect on the orientations of the PH and catalytic core domains relative to the lipid membranes.


Nature Communications | 2016

MHC class II complexes sample intermediate states along the peptide exchange pathway

Marek Wieczorek; Jana Sticht; Sebastian Stolzenberg; Sebastian Günther; Christoph Wehmeyer; Z El Habre; Miguel Álvaro-Benito; Frank Noé; Christian Freund

The presentation of peptide-MHCII complexes (pMHCIIs) for surveillance by T cells is a well-known immunological concept in vertebrates, yet the conformational dynamics of antigen exchange remain elusive. By combining NMR-detected H/D exchange with Markov modelling analysis of an aggregate of 275 microseconds molecular dynamics simulations, we reveal that a stable pMHCII spontaneously samples intermediate conformations relevant for peptide exchange. More specifically, we observe two major peptide exchange pathways: the kinetic stability of a pMHCIIs ground state defines its propensity for intrinsic peptide exchange, while the population of a rare, intermediate conformation correlates with the propensity of the HLA-DM-catalysed pathway. Helix-destabilizing mutants designed based on our model shift the exchange behaviour towards the HLA-DM-catalysed pathway and further allow us to conceptualize how allelic variation can shape an individuals MHC restricted immune response.


ACS Chemical Neuroscience | 2017

The Isomeric Preference of an Atypical Dopamine Transporter Inhibitor Contributes to Its Selection of the Transporter Conformation

Ara M. Abramyan; Sebastian Stolzenberg; Zheng Li; Claus J. Loland; Frank Noé; Lei Shi

Cocaine, a widely abused psychostimulant, inhibits the dopamine transporter (DAT) by trapping the protein in an outward-open conformation, whereas atypical DAT inhibitors such as benztropine have low abuse liability and prefer less outward-open conformations. Here, we use a spectrum of computational modeling and simulation approaches to obtain the underlying molecular mechanism in atomistic detail. Interestingly, our quantum mechanical calculations and molecular dynamics (MD) simulations suggest that a benztropine derivative JHW007 prefers a different stereoisomeric conformation of tropane in binding to DAT compared to that of a cocaine derivative, CFT. To further investigate the different inhibition mechanisms of DAT, we carried out MD simulations in combination with Markov state modeling analysis of wild-type and Y156F DAT in the absence of any ligand or the presence of CFT or JHW007. Our results indicate that the Y156F mutation and CFT shift the conformational equilibrium toward an outward-open conformation, whereas JHW007 prefers an inward-occluded conformation. Our findings reveal the mechanistic details of DAT inhibition by JHW007 at the atomistic level, which provide clues for rational design of atypical inhibitors.

Collaboration


Dive into the Sebastian Stolzenberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Noé

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge