Sebastian T. B. Goennenwein
Nanosystems Initiative Munich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sebastian T. B. Goennenwein.
Physical Review B | 2013
Yan-Ting Chen; Saburo Takahashi; Hiroyasu Nakayama; Matthias Althammer; Sebastian T. B. Goennenwein; Eiji Saitoh; Gerrit E. W. Bauer
We present a theory of the spin Hall magnetoresistance (SMR) in multilayers made from an insulating ferromagnet F, such as yttrium iron garnet (YIG), and a normal metal N with spin-orbit interactions, such as platinum (Pt). The SMR is induced by the simultaneous action of spin Hall and inverse spin Hall effects and therefore a nonequilibrium proximity phenomenon. We compute the SMR in F|N and F|N|F layered systems, treating N by spin-diffusion theory with quantum mechanical boundary conditions at the interfaces in terms of the spin-mixing conductance. Our results explain the experimentally observed spin Hall magnetoresistance in N|F bilayers. For F|N|F spin valves we predict an enhanced SMR amplitude when magnetizations are collinear. The SMR and the spin-transfer torques in these trilayers can be controlled by the magnetic configuration.
New Journal of Physics | 2009
Mathias Weiler; A. Brandlmaier; Stephan Geprägs; Matthias Althammer; Matthias Opel; C. Bihler; Hans Huebl; M. S. Brandt; Rudolf Gross; Sebastian T. B. Goennenwein
The control of magnetic properties by means of an electric field is an important aspect in magnetism and magnetoelectronics. We here utilize magnetoelastic coupling in ferromagnetic/piezoelectric hybrids to realize a voltage control of magnetization orientation at room temperature. The samples consist of polycrystalline nickel thin films evaporated onto piezoelectric actuators. The magnetic properties of these multifunctional hybrids are investigated at room temperature as a function of the voltage controlled stress exerted by the actuator on the Ni film. Ferromagnetic resonance spectroscopy shows that the magnetic easy axis in the Ni film plane is rotated by 90° upon changing the polarity of the voltage Vp applied to the actuator. In other words, the in-plane uniaxial magnetic anisotropy of the Ni film can be inverted via the application of an appropriate voltage Vp. Using superconducting quantum interference device (SQUID) magnetometry, the evolution of the magnetization vector is recorded as a function of Vp and of the external magnetic field. Changing Vp allows to reversibly adjust the magnetization orientation in the Ni film plane within a range of approximately 70°. All magnetometry data can be quantitatively understood in terms of the magnetic free energy determined from the ferromagnetic resonance experiments. These results demonstrate that magnetoelastic coupling in hybrid structures is indeed a viable option to control magnetization orientation in technologically relevant ferromagnetic thin films at room temperature.
Physical Review Letters | 2013
Mathias Weiler; Matthias Althammer; Michael Schreier; Johannes Lotze; Matthias Pernpeintner; Sibylle Meyer; Hans Huebl; Rudolf Gross; Akashdeep Kamra; Jiang Xiao; Yan-Ting Chen; HuJun Jiao; Gerrit E. W. Bauer; Sebastian T. B. Goennenwein
We perform a quantitative, comparative study of the spin pumping, spin Seebeck, and spin Hall magnetoresistance effects, all detected via the inverse spin Hall effect in a series of over 20 yttrium iron garnet/Pt samples. Our experimental results fully support present, exclusively spin current-based, theoretical models using a single set of plausible parameters for spin mixing conductance, spin Hall angle, and spin diffusion length. Our findings establish the purely spintronic nature of the aforementioned effects and provide a quantitative description, in particular, of the spin Seebeck effect.
Physical Review Letters | 2012
Mathias Weiler; Matthias Althammer; Franz D. Czeschka; Hans Huebl; M. Wagner; Matthias Opel; Inga-Mareen Imort; Günter Reiss; Andy Thomas; Rudolf Gross; Sebastian T. B. Goennenwein
A scannable laser beam is used to generate local thermal gradients in metallic (Co2FeAl) or insulating (Y3Fe5O12) ferromagnetic thin films. We study the resulting local charge and spin currents that arise due to the anomalous Nernst effect (ANE) and the spin Seebeck effect (SSE), respectively. In the local ANE experiments, we detect the voltage in the Co2FeAl thin film plane as a function of the laser-spot position and external magnetic field magnitude and orientation. The local SSE effect is detected in a similar fashion by exploiting the inverse spin Hall effect in a Pt layer deposited on top of the Y3Fe5O12. Our findings establish local thermal spin and charge current generation as well as spin caloritronic domain imaging.
Physical Review B | 2009
Deepak Venkateshvaran; Matthias Althammer; Andrea Nielsen; Stephan Geprägs; M. S. Ramachandra Rao; Sebastian T. B. Goennenwein; Matthias Opel; Rudolf Gross
The ferrimagnetic spinel oxide Zn(x)Fe(3-x)O(4) combines high Curie temperature and spin polarization with tunable electrical and magnetic properties, making it a promising functional material for spintronic devices. We have grown epitaxial thin films with 0<=x<=0.9 on MgO(001) substrates with excellent structural properties both in pure Ar atmosphere and an Ar/O2 mixture by laser molecular beam epitaxy. We find that the electrical conductivity and the saturation magnetization can be tuned over a wide range during growth. Our extensive characterization of the films provides a clear picture of the underlying physics of this spinel ferrimagnet with antiparallel Fe moments on the A and B sublattice: (i) Zn substitution removes both Fe3+ moments from the A sublattice and itinerant charge carriers from the B sublattice, (ii) growth in finite oxygen partial pressure generates Fe vacancies on the B sublattice also removing itinerant charge carriers, and (iii) application of both Zn substitution and excess oxygen results in a compensation effect as Zn substitution partially removes the Fe vacancies. A decrease (increase) of charge carrier density results in a weakening (strengthening) of double exchange and thereby a decrease (increase) of conductivity and the saturation magnetization. This scenario is confirmed by the observation that the saturation magnetization scales with the longitudinal conductivity. The combination of tailored films with semiconductor materials such as ZnO in multi-functional heterostructures seems to be particularly appealing.
Physical Review Letters | 2013
Hans Huebl; Christoph W. Zollitsch; Johannes Lotze; Fredrik Hocke; Moritz Greifenstein; A. Marx; Rudolf Gross; Sebastian T. B. Goennenwein
We report the observation of strong coupling between the exchange-coupled spins in a gallium-doped yttrium iron garnet and a superconducting coplanar microwave resonator made from Nb. The measured coupling rate of 450 MHz is proportional to the square root of the number of exchange-coupled spins and well exceeds the loss rate of 50 MHz of the spin system. This demonstrates that exchange-coupled systems are suitable for cavity quantum electrodynamics experiments, while allowing high integration densities due to their spin densities of the order of one Bohr magneton per atom. Our results furthermore show, that experiments with multiple exchange-coupled spin systems interacting via a single resonator are within reach.
Physical Review B | 2013
Michael Schreier; Akashdeep Kamra; Mathias Weiler; Jiang Xiao; Gerrit E. W. Bauer; Rudolf Gross; Sebastian T. B. Goennenwein
We calculate the phonon, electron, and magnon temperature profiles in yttrium iron garnet/platinum bilayers by diffusive theory with appropriate boundary conditions, in particular taking into account interfacial thermal resistances. Our calculations show that in thin film hybrids, the interface magnetic heat conductance qualitatively affects the magnon temperature. Based on published material parameters we assess the degree of nonequilibrium at the yttrium iron garnet/platinum interface. The magnitude of the spin Seebeck effect derived from this approach compares well with experimental results for the longitudinal spin Seebeck effect. Additionally, we address the temperature profiles in the transverse spin Seebeck effect.
Applied Physics Letters | 2012
Stephan Geprägs; Sibylle Meyer; Stephan Altmannshofer; Matthias Opel; F. Wilhelm; A. Rogalev; Rudolf Gross; Sebastian T. B. Goennenwein
Using X-ray magnetic circular dichroism (XMCD) measurements, we explore the possible existence of induced magnetic moments in thin Pt films deposited onto the ferrimagnetic insulator yttrium iron garnet (Y3Fe5O12). Such a magnetic proximity effect is well established for Pt/ferromagnetic metal heterostructures. Indeed, we observe a clear XMCD signal at the Pt L3 edge in Pt/Fe bilayers, while no such signal can be discerned in XMCD traces of Pt/Y3Fe5O12 bilayers. Integrating the XMCD signals allows to estimate an upper limit for the induced Pt magnetic polarization in Pt/Y3Fe5O12 bilayers.
Applied Physics Letters | 2013
Michael Schreier; Niklas Roschewsky; Erich Dobler; Sibylle Meyer; Hans Huebl; Rudolf Gross; Sebastian T. B. Goennenwein
A measurement technique for the spin Seebeck effect is presented, wherein the normal metal layer used for its detection is exploited simultaneously as a resistive heater and thermometer. We show how the various contributions to the measured total signal can be disentangled, allowing to extract the voltage signal solely caused by the spin Seebeck effect. To this end, we performed measurements as a function of the external magnetic field strength and its orientation. We find that the effect scales linearly with the induced rise in temperature, as expected for the spin Seebeck effect.
Applied Physics Letters | 2015
Sebastian T. B. Goennenwein; Richard Schlitz; Matthias Pernpeintner; Kathrin Ganzhorn; Matthias Althammer; Rudolf Gross; Hans Huebl
We study the local and non-local magnetoresistance of thin Pt strips deposited onto yttrium iron garnet. The local magnetoresistive response, inferred from the voltage drop measured along one given Pt strip upon current-biasing it, shows the characteristic magnetization orientation dependence of the spin Hall magnetoresistance. We simultaneously also record the non-local voltage appearing along a second, electrically isolated, Pt strip, separated from the current carrying one by a gap of a few 100 nm. The corresponding non-local magnetoresistance exhibits the symmetry expected for a magnon spin accumulation-driven process, confirming the results recently put forward by Cornelissen et al. [1]. Our magnetotransport data, taken at a series of different temperatures as a function of magnetic field orientation, rotating the externally applied field in three mutually orthogonal planes, show that the mechanisms behind the spin Hall and the non-local magnetoresistance are qualitatively different. In particular, the non-local magnetoresistance vanishes at liquid Helium temperatures, while the spin Hall magnetoresistance prevails.