Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastian Thompson is active.

Publication


Featured researches published by Sebastian Thompson.


Bioconjugate Chemistry | 2010

Synthesis and photophysical properties of thioglycosylated chlorins, isobacteriochlorins, and bacteriochlorins for bioimaging and diagnostics.

Sunaina Singh; Amit Aggarwal; Sebastian Thompson; João P. C. Tomé; Xianchun Zhu; Diana Samaroo; Mikki Vinodu; Ruomei Gao; Charles Michael Drain

The facile synthesis and photophysical properties of three nonhydrolyzable thioglycosylated porphyrinoids are reported. Starting from meso-perfluorophenylporphyrin, the nonhydrolyzable thioglycosylated porphyrin (PGlc₄), chlorin (CGlc₄), isobacteriochlorin (IGlc₄), and bacteriochlorin (BGlc₄) can be made in 2-3 steps. The ability to append a wide range of targeting agents onto the perfluorophenyl moieties, the chemical stability, and the ability to fine-tune the photophysical properties of the chromophores make this a suitable platform for development of biochemical tags, diagnostics, or as photodynamic therapeutic agents. Compared to the porphyrin in phosphate buffered saline, CGlc₄ has a markedly greater absorbance of red light near 650 nm and a 6-fold increase in fluorescence quantum yield, whereas IGlc₄ has broad Q-bands and a 12-fold increase in fluorescence quantum yield. BGlc₄ has a similar fluorescence quantum yield to PGlc₄ (<10%), but the lowest-energy absorption/emission peaks of BGlc₄ are considerably red-shifted to near 730 nm with a nearly 50-fold greater absorbance, which may allow this conjugate to be an effective PDT agent. The uptake of CGlc₄, IGlc₄, and BGlc₄ derivatives into cells such as human breast cancer cells MDA-MB-231 and K:Molv NIH 3T3 mouse fibroblast cells can be observed at nanomolar concentrations. Photobleaching under these conditions is minimal.


Analytical Chemistry | 2009

Label-Free Cancer Cell Detection with Impedimetric Transducers

Roberto de la Rica; Sebastian Thompson; Antonio Baldi; César Fernández-Sánchez; Charles Michael Drain; Hiroshi Matsui

While cancer is still an implacable disease, many cancers can be cured if they are diagnosed in an early stage. Recently, it was reported that the transformation from normal cells to cancer cells can change their mechanoelastic properties to become softer and more deformable. If some cancer cells are more deformable, then a progressive increase of the volume of softer cancer cells should be induced as an abrupt change in osmolarity is applied. On the basis of this hypothesis, we developed a sensor that can electronically monitor the volume increase of cancer cells under hyposmotic pressure. By this methodology, K:Molv NIH 3T3 cells, 786-O human kidney carcinoma cells, and MPSC-1 ovarian cancer cells were successfully detected within 30 min using on the order of 10 cells. These cancer cells could be detected with the same sensitivity even in the presence of a vast excess of the respective noncancerous cells [NIH 3T3 cells, human embryonic kidney (HEK) 293 cells, ovarian surface epithelial (OSE) cells]. Since the proposed impedimetric sensor could be useful for detecting cancer cells fast and reliably, it could be further implemented in the screening of large populations of tissue samples and the detection of circulating tumor cells for point-of-care applications.


Photochemistry and Photobiology | 2014

Photophysics of Glycosylated Derivatives of a Chlorin, Isobacteriochlorin and Bacteriochlorin for Photodynamic Theragnostics: Discovery of a Two‐photon‐absorbing Photosensitizer

Amit Aggarwal; Sebastian Thompson; Sunaina Singh; Brandon Newton; Akeem Moore; Ruomie Gao; Xinbin Gu; Sushmita Mukherjee; Charles Michael Drain

The photophysical properties of a chlorin, isobacteriochlorin and bacteriochlorin built on a core tetrapentafluorophenylporphyrin (TPPF20) and the nonhydrolyzable para thioglycosylated conjugates of these chromophores are presented. The photophysical characterization of these compounds was done in three different solvents to correlate with different environments in cells and tissues. Compared with TPPF20 other dyes have greater absorption in the red region of the visible spectrum and greater fluorescence quantum yields. The excited state lifetimes are from 3 to 11 ns. The radiative and nonradiative rate constants for deactivation of the excited state were estimated from the fluorescence quantum yield and excited state lifetime. The data indicate that the bacteriochlorin has strong absorption bands near 730 nm and efficiently enters the triplet manifold. The isobacteriochlorin has a 40–70% fluorescence quantum yield depending on solvent, so it may be a good fluorescent tag. The isobacteriochlorins also display enhanced two‐photon absorption, thereby allowing the use of 860 nm light to excite the compound. While the two‐photon cross section of 25 GM units is not large, excitation of low chromophore concentrations can induce apoptosis. The glycosylated compounds accumulate in cancer cells and a head and neck squamous carcinoma xenograft tumor model in mice. These compounds are robust to photobleaching.


Small | 2017

Light-triggered inactivation of enzymes with photothermal nanoheaters

Sebastian Thompson; Sureyya Paterson; Marwa M. M. Azab; Alastair W. Wark; Roberto de la Rica

A universal method for inactivating enzymes on demand is introduced, which involves irradiating nanorod-bound enzymes with near-infrared light. The subsequent generation of plasmonic heat denatures the enzymes selectively without damaging other proteins or cell membranes present in the same solution.


12th World Congress of the International Photodynamic Association | 2009

New porphyrin glyco-conjugates

Charles Michael Drain; Sunaina Singh; Diana Samaroo; Sebastian Thompson; Mikki Vinodu; João P. C. Tomé

Porphyrins bearing sugars and other motifs are proposed for a variety of therapeutic applications. Non-hydrolysable glyco conjugates of porphyrins can be formed in rapid, room temperature reacting in greater than 90% yields from tetraperfluorophenyporphyrin. Additional functional groups can be appended using the same chemistry but different stoichiometries of the reagents. Thus sugars, amines, peptides, and cationic moieties designed to target cancer cells or other diseased or disease-causing cells are made rapidly and cleanly. These compounds can then be rapidly screened for cell uptake, or selected from combinatorial libraries by cell uptake assays using a combination of fluorescence microscopy and mass spectrometry. Modifications of the macrocycle allow fine-tuning of the photonic properties for specific medical, imaging, or biochemical applications.


Nanoscale | 2018

Label free localization of nanoparticles in live cancer cells using spectroscopic microscopy

Graham Spicer; Luay M. Almassalha; Ignacio Martínez; Ronald Ellis; John E. Chandler; Scott Gladstein; Di Zhang; The-Quyen Nguyen; Seth Feder; Hariharan Subramanian; Roberto de la Rica; Sebastian Thompson; Vadim Backman

Gold nanoparticles (GNPs) have become essential tools used in nanobiotechnology due to their tunable plasmonic properties and low toxicity in biological samples. Among the available approaches for imaging GNPs internalized by cells, hyperspectral techniques stand out due to their ability to simultaneously image and perform spectral analysis of GNPs. Here, we present a study utilizing a recently introduced hyperspectral imaging technique, live-cell PWS, for the imaging, tracking, and spectral analysis of GNPs in live cancer cells. Using principal components analysis, the extracellular or intracellular localization of the GNPs can be determined without the use of exogenous labels. This technique uses wide-field white light, assuring minimal toxicity and suitable signal-to-noise ratio for spectral and temporal resolution of backscattered signal from GNPs and local cellular structures. The application of live-cell PWS introduced here could make a great impact in nanomedicine and nanotechnology by giving new insights into GNP internalization and intracellular trafficking.


Bioorganic & Medicinal Chemistry | 2018

Compromising the plasma membrane as a secondary target in photodynamic therapy-induced necrosis

Sebastian Thompson; Amit Aggarwal; Sunaina Singh; Alejandro P. Adam; João P. C. Tomé; Charles Michael Drain

Photodynamic therapy (PDT) is a non-invasive treatment widely applied to different cancers. The goal of PDT is the photo-induced destruction of cancer cells by the activation of different cell death mechanisms, including apoptosis and/or necrosis. Recent efforts focusing on understanding the mechanisms of cell death activated by PDT find that it depends on the type of photosensitizer (PS), targeted organelles, and nature of the light used. It is generally accepted that very short incubation times are required to direct the PS to the plasma membrane (PM), while longer periods result in the accumulation of the PS in internal compartments such as the endoplasmic reticulum or mitochondria. Glycosylation of the PS targets cancer via saccharide receptors on the cell surface, and is generally assumed that these compounds rapidly internalize and accumulate, e.g. in the endoplasmic reticulum. Herein we demonstrate that a minor fraction of a glycosylated chlorin compound residing at the PM of cancer cells can activate necrosis upon illumination by compromising the PM independently of the length of the incubation period. The results presented here show that the PM can also be targeted by glycosylated PS designed to accumulate in internal organelles. PS activation to induce necrosis by compromising the plasma membrane has the benefits of fast cell death and shorter irradiation times. The findings described here expand our understanding of the cellular damage induced by phototherapies, presenting the possibility of activating another cell death mechanism based on the incubation time and type of light used.


Cancer Letters | 2010

Phospholipase D-mTOR requirement for the Warburg effect in human cancer cells

Alfredo Toschi; Evan Lee; Sebastian Thompson; Noga Gadir; Paige Yellen; C. Michael Drain; Michael Ohh


Photochemical and Photobiological Sciences | 2008

Low concentrations of a non-hydrolysable tetra-S-glycosylated porphyrin and low light induces apoptosis in human breast cancer cells via stress of the endoplasmic reticulum

Sebastian Thompson; Xin Chen; Li Hui; Alfredo Toschi; Charles Michael Drain


Chemical Science | 2016

Self-assembly of gold supraparticles with crystallographically aligned and strongly coupled nanoparticle building blocks for SERS and photothermal therapy

Sureyya Paterson; Sebastian Thompson; J. Gracie; Alastair W. Wark; R. de la Rica

Collaboration


Dive into the Sebastian Thompson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto de la Rica

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Sunaina Singh

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alfredo Toschi

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikki Vinodu

City University of New York

View shared research outputs
Researchain Logo
Decentralizing Knowledge