Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastiano Banni is active.

Publication


Featured researches published by Sebastiano Banni.


Journal of Gastroenterology and Hepatology | 2009

Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes

M. Ricchi; Maria Rosaria Odoardi; L. Carulli; C. Anzivino; Stefano Ballestri; Adriano Pinetti; Luca Isaia Fantoni; Fabio Marra; Marco Bertolotti; Sebastiano Banni; Amedeo Lonardo; Nicola Carulli; Paola Loria

Background and Aim:  Studies have shown monounsaturated oleic acid to be less toxic than palmitic acid and to prevent/attenuate palmitic acid hepatocites toxicity in steatosis models in vitro. However, to what degree these effects are mediated by steatosis extent is unknown.


Journal of Nutritional Biochemistry | 1996

Characterization of conjugated diene fatty acids in milk, dairy products, and lamb tissues

Sebastiano Banni; Gianfranca Carta; Maria S. Contini; Elisabetta Angioni; Monica Deiana; Maria Assunta Dessì; Maria Paola Melis; Francesco P. Corongiu

Conjugated diene isomers of linoleic acid (CLA), possess anticarcinogenic and antiatherogenic properties, but little is known about their metabolism. We have recently obtained evidence that CLA present in partially hydrogenated oil can be metabolized to conjugated linolenic and eicosatrienoic acids in rat liver. In the present study, we have investigated whether CLA are metabolized in the liver of lambs, which normally consume high levels of CLA produced in the rumen and present in their diet, consisting exclusively of milk. Conjugated linolenic, eicosatrienoic, and arachidonic acids were detected in lamb liver phospholipids showing that elongation and desaturation of CLA occur also in lamb tissues, and that all metabolites maintain the conjugated diene structure.


Free Radical Biology and Medicine | 1999

Inhibition of peroxynitrite dependent DNA base modification and tyrosine nitration by the extra virgin olive oil-derived antioxidant hydroxytyrosol

Monica Deiana; Okezie I Aruoma; Maria de Lourdes Pires Bianchi; Jeremy P.E. Spencer; Harparkash Kaur; Barry Halliwell; Robert Aeschbach; Sebastiano Banni; M. Assunta Dessì; Francesco P. Corongiu

Hydroxytyrosol is one of the o-diphenolic compounds in extra virgin olive oil and has been suggested to be a potent antioxidant. The superoxide radical (O2*-) and nitric oxide (NO*) can react very rapidly to form peroxynitrite (ONOO ), a reactive tissue damaging species thought to be involved in the pathology of several chronic diseases. Hydroxytyrosol was highly protective against the peroxynitrite-dependent nitration of tyrosine and DNA damage by peroxynitrite in vitro. Given that extra virgin olive oil is consumed daily by many humans, hydroxytyrosol derived from this diet could conceivably provide a defense against damage by oxidants in vivo. The biological activity of hydroxytyrosol in vivo will depend on its intake, uptake and access to cellular compartments.


Journal of Nutrition | 2009

Endocannabinoids May Mediate the Ability of (n-3) Fatty Acids to Reduce Ectopic Fat and Inflammatory Mediators in Obese Zucker Rats

Barbara Batetta; Mikko Griinari; Gianfranca Carta; Elisabetta Murru; Alessia Ligresti; Lina Cordeddu; Elena Giordano; Francesca Sanna; Tiziana Bisogno; Sabrina Uda; Maria Collu; Inge Bruheim; Vincenzo Di Marzo; Sebastiano Banni

Dietary (n-3) long-chain PUFA [(n-3) LCPUFA] ameliorate several metabolic risk factors for cardiovascular diseases, although the mechanisms of these beneficial effects are not fully understood. In this study, we compared the effects of dietary (n-3) LCPUFA, in the form of either fish oil (FO) or krill oil (KO) balanced for eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content, with a control (C) diet containing no EPA and DHA and similar contents of oleic, linoleic, and alpha-linolenic acids, on ectopic fat and inflammation in Zucker rats, a model of obesity and related metabolic dysfunction. Diets were fed for 4 wk. Given the emerging evidence for an association between elevated endocannabinoid concentrations and metabolic syndrome, we also measured tissue endocannabinoid concentrations. In (n-3) LCPUFA-supplemented rats, liver triglycerides and the peritoneal macrophage response to an inflammatory stimulus were significantly lower than in rats fed the control diet, and heart triglycerides were lower, but only in KO-fed rats. These effects were associated with a lower concentration of the endocannabinoids, anandamide and 2-arachidonoylglycerol, in the visceral adipose tissue and of anandamide in the liver and heart, which, in turn, was associated with lower levels of arachidonic acid in membrane phospholipids, but not with higher activity of endocannabinoid-degrading enzymes. Our data suggest that the beneficial effects of a diet enriched with (n-3) LCPUFA are the result of changes in membrane fatty acid composition. The reduction of substrates for inflammatory molecules and endocannabinoids may account for the dampened inflammatory response and the physiological reequilibration of body fat deposition in obese rats.


Nutrition and Cancer | 2002

Conjugated linoleic acid isomers and mammary cancer prevention.

Clement Ip; Yan Dong; Margot M. Ip; Sebastiano Banni; Gianfranca Carta; Elisabetta Angioni; Elisabetta Murru; Simona Spada; Maria Paola Melis; Asgeir Saebo

There is increasing evidence that individual isomers of conjugated linoleic acid (CLA) may have unique biological or biochemical effects. A primary objective of this study was to determine whether there might be differences in the anticancer activity of 9,11-CLA and 10,12-CLA. This was achieved by evaluating the reduction in premalignant lesions and carcinomas in the mammary gland of rats that had been treated with a single dose of methylnitrosourea and given 0.5% of either highly purified CLA isomer in the diet. Our results showed that the anticancer efficacies of the two isomers were very similar. At 6 wk after carcinogen administration, the total number of premalignant lesions was reduced by 33-36%. At 24 wk, the total number of mammary carcinomas was reduced by 35-40%. The concentration of each CLA isomer and its respective metabolites was analyzed in the mammary fat pad. Tissue level of 10,12-CLA was much lower than that of 9,11-CLA. The pool of metabolites from each isomer was very similar between the two groups and represented only a small fraction of total conjugated diene fatty acids. Feeding of 9,11-CLA resulted in minimal changes in other unsaturated fatty acids. In contrast, feeding of 10,12-CLA produced a wider spectrum of perturbations. Small but significant increases in 16:1 and 16:2 were detected; these were accompanied by decreases in 20:2, 20:3, 20:4, 22:4, and 22:6. The above observation suggests that 10,12-CLA might be more potent than 9,11-CLA in interfering with elongation and desaturation of linoleic and linolenic acids. In summary, our study showed that, at the 0.5% dose level, the anticancer activity of 9,11-CLA and 10,12-CLA was very similar, even though accumulation of 10,12-CLA in the mammary tissue was considerably less than that of 9,11-CLA. These confounding changes of the other unsaturated fatty acids in contributing to the effect of 10,12-CLA need to be clarified.


Nutrition and Cancer | 2001

Vaccenic acid feeding increases tissue levels of conjugated linoleic acid and suppresses development of premalignant lesions in rat mammary gland

Sebastiano Banni; Elisabetta Angioni; Elisabetta Murru; Gianfranca Carta; Maria Paola Melis; Dale E. Bauman; Yan Dong; Clement Ip

The objective of this report was to determine whether vaccenic acid (t11-18:1) is converted efficiently to conjugated linoleic acid (c9,t11-18:2, CLA) in rats via the Δ2-desaturase reaction and, if so, whether vaccenic acid could substitute for CLA as an anticancer agent. In Study 1, rats were fed 1%, 2%, or 3% vaccenic acid in their diet, and tissue levels of CLA and CLA metabolites were determined in liver and mammary gland. In general, concentrations of CLA and CLA metabolites increased proportionately with an increase in vaccenic acid intake, at least up to the 2% dose level. Beyond this dose, there was clearly a plateauing effect. Thus vaccenic acid concentration increased from an undetectable level in the control to 78.5 nmol/mg lipid in the liver of rats fed a 2% vaccenic acid diet. This was accompanied by an increase in CLA from 2.3 to 33.6 nmol/mg lipid. These changes were also mirrored in the mammary gland, where increases in vaccenic acid (from 27.5 to 163.2 nmol/mg lipid) and CLA (from 17.8 to 108.9 nmol/mg lipid) were similarly observed. Vaccenic acid at 2% produced a CLA concentration in the mammary gland that was historically associated with a positive response in tumor inhibition based on our past experience. This provided the basis for selecting 2% vaccenic acid in Study 2, which was designed to evaluate its efficacy in blocking the development of premalignant lesions in the rat mammary gland. In this experiment, formation of histologically identifiable pathology due to intraductal proliferation of terminal end bud cells of mammary epithelium was used as the end point of analysis at 6 wk after carcinogen administration. Treatment with vaccenic acid reduced the total number of these premalignant lesions by ~50%. We hypothesize that the anticancer response to vaccenic acid is likely to be mediated by its endogenous conversion to CLA via Δ2-desaturase.


Methods in Enzymology | 1994

Detection of conjugated dienes by second derivative ultraviolet spectrophotometry.

Francesco P. Corongiu; Sebastiano Banni

Publisher Summary This chapter discusses the detection of conjugated dienes by second derivative ultraviolet spectrophotometry. Conjugated dienes (CD) refers to two double bonds separated by a single bond. This structure is unusual in polyunsaturated fatty acids (PUFA). It is generally accepted that the occurrence of conjugated dienes in lipids means autoxidation of lipids. In fact, because of the divinylmethane structure, PUFA are particularly susceptible to hydrogen abstraction by free radical attack, becoming themselves free radical intermediates. This results in the rearrangement of the double bond to conjugated dienes and, in the presence of O 2 , the formation of fatty acid hydroperoxides. The conjugated diene moiety is a strong chromophore that can be detected spectrophotometrically. When present in fatty acids they show a characteristic absorption in the UV region at around 234 nm. However, detection and quantitation of conjugated dienes in mixtures of peroxidized and nonperoxidized lipids, by means of simple UV spectrophotometry, is complicated by the end absorption exhibited by naturally occurring and nonperoxidized lipids.


International Journal of Molecular Sciences | 2012

Marine omega-3 phospholipids: metabolism and biological activities.

Lena Burri; Nils Hoem; Sebastiano Banni; Kjetil Berge

The biological activities of omega-3 fatty acids (n-3 FAs) have been under extensive study for several decades. However, not much attention has been paid to differences of dietary forms, such as triglycerides (TGs) versus ethyl esters or phospholipids (PLs). New innovative marine raw materials, like krill and fish by-products, present n-3 FAs mainly in the PL form. With their increasing availability, new evidence has emerged on n-3 PL biological activities and differences to n-3 TGs. In this review, we describe the recently discovered nutritional properties of n-3 PLs on different parameters of metabolic syndrome and highlight their different metabolic bioavailability in comparison to other dietary forms of n-3 FAs.


Nutrition & Metabolism | 2011

Effect of dietary krill oil supplementation on the endocannabinoidome of metabolically relevant tissues from high-fat-fed mice

Fabiana Piscitelli; Gianfranca Carta; Tiziana Bisogno; Elisabetta Murru; Lina Cordeddu; Kjetil Berge; Sally Tandy; Jeffrey S. Cohn; Mikko Griinari; Sebastiano Banni; Vincenzo Di Marzo

BackgroundOmega-3 polyunsaturated fatty acids (ω-3-PUFA) are known to ameliorate several metabolic risk factors for cardiovascular disease, and an association between elevated peripheral levels of endogenous ligands of cannabinoid receptors (endocannabinoids) and the metabolic syndrome has been reported. We investigated the dose-dependent effects of dietary ω-3-PUFA supplementation, given as krill oil (KO), on metabolic parameters in high fat diet (HFD)-fed mice and, in parallel, on the levels, in inguinal and epididymal adipose tissue (AT), liver, gastrocnemius muscle, kidneys and heart, of: 1) the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), 2) two anandamide congeners which activate PPARα but not cannabinoid receptors, N-oleoylethanolamine and N-palmitoylethanolamine, and 3) the direct biosynthetic precursors of these compounds.MethodsLipids were identified and quantified using liquid chromatography coupled to atmospheric pressure chemical ionization single quadrupole mass spectrometry (LC-APCI-MS) or high resolution ion trap-time of flight mass spectrometry (LC-IT-ToF-MS).ResultsEight-week HFD increased endocannabinoid levels in all tissues except the liver and epididymal AT, and KO reduced anandamide and/or 2-AG levels in all tissues but not in the liver, usually in a dose-dependent manner. Levels of endocannabinoid precursors were also generally down-regulated, indicating that KO affects levels of endocannabinoids in part by reducing the availability of their biosynthetic precursors. Usually smaller effects were found of KO on OEA and PEA levels.ConclusionsOur data suggest that KO may promote therapeutic benefit by reducing endocannabinoid precursor availability and hence endocannabinoid biosynthesis.


Journal of the American Oil Chemists' Society | 1994

Liquid chromatographic-mass spectrometric analysis of conjugated diene fatty acids in a partially hydrogenated fat

Sebastiano Banni; Billy W. Day; Rhobert W. Evans; Francesco P. Corongiu; Benito Lombardi

A commercially available partially hydrogenated fat was analyzed for fatty acids containing conjugated dienes. The fatty acids were isolated by high-performance liquid chromatography (HPLC), and analyzed with a photodiode array detector and an atmospheric-pressure ionization mass spectrometer. Conventional and second-derivative ultraviolet (UV) spectra of the peaks eluting from the HPLC were recorded with the photodiode array detector, and peaks displaying second-derivative UV spectra characteristic of the conjugated diene chromophore were analyzed by mass spectrometry. The UV and mass spectra of the fatty acids with conjugated dienes, present in the partially hydrogenated fat, were identical to those of reference preparations of linoleic acid isomers with conjugated dienes. The results obtained emphasize that care must be exercised in the interpretation of clinical and experimental data concerning the detection of conjugated dienes in tissues or body fluids of humans and experimental animals. The conjugated dienes may not reflect an ongoing process of lipid peroxidation, but may be of dietary origin.

Collaboration


Dive into the Sebastiano Banni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Collu

University of Cagliari

View shared research outputs
Top Co-Authors

Avatar

Inge Bruheim

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge