Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sébastien Anguille is active.

Publication


Featured researches published by Sébastien Anguille.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination

Viggo Van Tendeloo; A. Van de Velde; A Van Driessche; Nathalie Cools; Sébastien Anguille; Kristin Ladell; Emma Gostick; Katrien Vermeulen; K. Pieters; Griet Nijs; Barry S. Stein; E. Smits; Wilfried Schroyens; Alain Gadisseur; Inge Vrelust; Philippe G. Jorens; Herman Goossens; I. J. de Vries; David A. Price; Yusuke Oji; Yoshihiro Oka; Haruo Sugiyama; Zwi N. Berneman

Active immunization using tumor antigen-loaded dendritic cells holds promise for the adjuvant treatment of cancer to eradicate or control residual disease, but so far, most dendritic cell trials have been performed in end-stage cancer patients with high tumor loads. Here, in a phase I/II trial, we investigated the effect of autologous dendritic cell vaccination in 10 patients with acute myeloid leukemia (AML). The Wilms’ tumor 1 protein (WT1), a nearly universal tumor antigen, was chosen as an immunotherapeutic target because of its established role in leukemogenesis and superior immunogenic characteristics. Two patients in partial remission after chemotherapy were brought into complete remission after intradermal administration of full-length WT1 mRNA-electroporated dendritic cells. In these two patients and three other patients who were in complete remission, the AML-associated tumor marker returned to normal after dendritic cell vaccination, compatible with the induction of molecular remission. Clinical responses were correlated with vaccine-associated increases in WT1-specific CD8+ T cell frequencies, as detected by peptide/HLA-A*0201 tetramer staining, and elevated levels of activated natural killer cells postvaccination. Furthermore, vaccinated patients showed increased levels of WT1-specific IFN-γ–producing CD8+ T cells and features of general immune activation. These data support the further development of vaccination with WT1 mRNA-loaded dendritic cells as a postremission treatment to prevent full relapse in AML patients.


Leukemia | 2012

Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia

Sébastien Anguille; Viggo Van Tendeloo; Zwi N. Berneman

The graft-versus-leukemia effect of allogeneic hematopoietic stem cell transplantation (HSCT) has shown that the immune system is capable of eradicating acute myeloid leukemia (AML). This knowledge, along with the identification of the target antigens against which antileukemia immune responses are directed, has provided a strong impetus for the development of antigen-targeted immunotherapy of AML. The success of any antigen-specific immunotherapeutic strategy depends critically on the choice of target antigen. Ideal molecules for immune targeting in AML are those that are: (1) leukemia-specific; (2) expressed in most leukemic blasts including leukemic stem cells; (3) important for the leukemic phenotype; (4) immunogenic; and (5) clinically effective. In this review, we provide a comprehensive overview on AML-related tumor antigens and assess their applicability for immunotherapy against the five criteria outlined above. In this way, we aim to facilitate the selection of appropriate target antigens, a task that has become increasingly challenging given the large number of antigens identified and the rapid pace at which new targets are being discovered. The information provided in this review is intended to guide the rational design of future antigen-specific immunotherapy trials, which will hopefully lead to new antileukemia therapies with more selectivity and higher efficacy.


Blood | 2012

Human plasmacytoid dendritic cells are equipped with antigen-presenting and tumoricidal capacities

Jurjen Tel; Evelien Smits; Sébastien Anguille; R.N. Joshi; Carl G. Figdor; I.J.M. de Vries

Human plasmacytoid dendritic cells (pDCs) represent a highly specialized naturally occurring dendritic-cell subset and are the main producers of type I interferons (IFNs) in response to viral infections. We show that human pDCs activated by the preventive vaccine FSME specifically up-regulate CD56 on their surface, a marker that was thought to be specific for NK cells and associated with cytolytic effector functions. We observed that FSME-activated pDCs specifically lysed NK target cells and expressed cytotoxic molecules, such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and granzyme B. Elevated levels of these molecules coincided with the expression of CD56, indicative for skewing human pDCs toward an interferon-producing killer DC subset. Detailed phenotypical and functional analysis revealed that pDCs attained a mature phenotype, secreted proinflammatory cytokines, and had the capacity to present antigens and stimulate T cells. Here, we report on the generation of CD56(+) human interferon producing killer pDCs with the capacity to present antigens. These findings aid in deciphering the role for pDCs in antitumor immunity and present a promising prospect of developing antitumor therapy using pDCs.


Leukemia | 2011

Interferon-α in acute myeloid leukemia: an old drug revisited.

Sébastien Anguille; Eva Lion; Yannick Willemen; Viggo Van Tendeloo; Zwi N. Berneman; E. Smits

Interferon-α (IFN-α), a type I IFN, is a well-known antitumoral agent. The investigation of its clinical properties in acute myeloid leukemia (AML) has been prompted by its pleiotropic antiproliferative and immune effects. So far, integration of IFN-α in the therapeutic arsenal against AML has been modest in view of the divergent results of clinical trials. Recent insights into the key pharmacokinetic determinants of the clinical efficacy of IFN along with advances in its pharmaceutical formulation, have sparked renewed interest in its use. This paper reviews the possible applicability of IFN-α in the treatment of AML and provides a rational basis to re-explore its efficacy in clinical trials.


PLOS ONE | 2012

Interleukin-15-Induced CD56(+) Myeloid Dendritic Cells Combine Potent Tumor Antigen Presentation with Direct Tumoricidal Potential

Sébastien Anguille; Eva Lion; Jurjen Tel; I. Jolanda M. de Vries; Karen Couderé; Phillip D. Fromm; Viggo Van Tendeloo; Evelien Smits; Zwi N. Berneman

Dendritic cells (DCs) are the quintessential antigen-presenting cells of the human immune system and play a prime role in coordinating innate and adaptive immune responses, explaining the strong and still growing interest in their application for cancer immunotherapy. Much current research in the field of DC-based immunotherapy focuses on optimizing the culture conditions for in vitro DC generation in order to assure that DCs with the best possible immunogenic qualities are being used for immunotherapy. In this context, monocyte-derived DCs that are alternatively induced by interleukin-15 (IL-15 DCs) have attracted recent attention due to their superior immunostimulatory characteristics. In this study, we show that IL-15 DCs, in addition to potent tumor antigen-presenting function, possess tumoricidal potential and thus qualify for the designation of killer DCs. Notwithstanding marked expression of the natural killer (NK) cell marker CD56 on a subset of IL-15 DCs, we found no evidence of a further phenotypic overlap between IL-15 DCs and NK cells. Allostimulation and antigen presentation assays confirmed that IL-15 DCs should be regarded as bona fide myeloid DCs not only from the phenotypic but also from the functional point of view. Concerning their cytotoxic activity, we demonstrate that IL-15 DCs are able to induce apoptotic cell death of the human K562 tumor cell line, while sparing tumor antigen-specific T cells. The cytotoxicity of IL-15 DCs is predominantly mediated by granzyme B and, to a small extent, by tumor necrosis factor-α (TNF-α)-related apoptosis-inducing ligand (TRAIL) but is independent of perforin, Fas ligand and TNF-α. In conclusion, our data provide evidence of a previously unappreciated role for IL-15 in the differentiation of human monocytes towards killer DCs. The observation that IL-15 DCs have killer DC capacity lends further support to their implementation in DC-based immunotherapy protocols.


PLOS ONE | 2011

Poly(I:C) Enhances the Susceptibility of Leukemic Cells to NK Cell Cytotoxicity and Phagocytosis by DC

Eva Lion; Sébastien Anguille; Zwi N. Berneman; Evelien Smits; Viggo Van Tendeloo

α Active specific immunotherapy aims at stimulating the hosts immune system to recognize and eradicate malignant cells. The concomitant activation of dendritic cells (DC) and natural killer (NK) cells is an attractive modality for immune-based therapies. Inducing immunogenic cell death to facilitate tumor cell recognition and phagocytosis by neighbouring immune cells is of utmost importance for guiding the outcome of the immune response. We previously reported that acute myeloid leukemic (AML) cells in response to electroporation with the synthetic dsRNA analogue poly(I:C) exert improved immunogenicity, demonstrated by enhanced DC-activating and NK cell interferon-γ-inducing capacities. To further invigorate the potential of these immunogenic tumor cells, we explored their effect on the phagocytic and cytotoxic capacity of DC and NK cells, respectively. Using single-cell analysis, we assessed these functionalities in two- and three-party cocultures. Following poly(I:C) electroporation AML cells become highly susceptible to NK cell-mediated killing and phagocytosis by DC. Moreover, the enhanced killing and the improved uptake are strongly correlated. Interestingly, tumor cell killing, but not phagocytosis, is further enhanced in three-party cocultures provided that these tumor cells were upfront electroporated with poly(I:C). Altogether, poly(I:C)-electroporated AML cells potently activate DC and NK cell functions and stimulate NK-DC cross-talk in terms of tumor cell killing. These data strongly support the use of poly(I:C) as a cancer vaccine component, providing a way to overcome immune evasion by leukemic cells.


Human Vaccines | 2011

Dendritic cell vaccine therapy for acute myeloid leukemia: Questions and answers

Sébastien Anguille; Eva Lion; Evelien Smits; Zwi N. Berneman; Viggo Van Tendeloo

The knowledge that our immune system can be exploited for control or even eradication of acute myeloid leukemia (AML) has sparked a strong interest in therapeutic vaccine strategies to mount effective anti-leukemic immunity in AML patients. One of the most tantalizing approaches in this regard involves the use of dendritic cell-based vaccines. Dendritic cells (DCs) are antigen-presenting cells, capable of inducing anti-leukemic immune responses directed against leukemia-associated antigens. They can be obtained in high numbers following in vitro differentiation of peripheral blood monocytes. Research efforts are now focused on optimizing in vitro culture conditions and antigen loading strategies of DCs in order to maximize their potential to induce anti-leukemic immunity. Here, we will highlight some important aspects in the design of a potent DC vaccine for AML. We also discuss the importance of natural killer cells and combination strategies to further improve the outcome of DC-based vaccination in AML patients.


PLOS ONE | 2015

Interleukin-15 Dendritic Cells Harness NK Cell Cytotoxic Effector Function in a Contact- and IL-15-Dependent Manner

Sébastien Anguille; Heleen H. Van Acker; Johan Van den Bergh; Yannick Willemen; Herman Goossens; Viggo Van Tendeloo; Evelien Smits; Zwi N. Berneman; Eva Lion

The contribution of natural killer (NK) cells to the treatment efficacy of dendritic cell (DC)-based cancer vaccines is being increasingly recognized. Much current efforts to optimize this form of immunotherapy are therefore geared towards harnessing the NK cell-stimulatory ability of DCs. In this study, we investigated whether generation of human monocyte-derived DCs with interleukin (IL)-15 followed by activation with a Toll-like receptor stimulus endows these DCs, commonly referred to as “IL-15 DCs”, with the capacity to stimulate NK cells. In a head-to-head comparison with “IL-4 DCs” used routinely for clinical studies, IL-15 DCs were found to induce a more activated, cytotoxic effector phenotype in NK cells, in particular in the CD56bright NK cell subset. With the exception of GM-CSF, no significant enhancement of cytokine/chemokine secretion was observed following co-culture of NK cells with IL-15 DCs. IL-15 DCs, but not IL-4 DCs, promoted NK cell tumoricidal activity towards both NK-sensitive and NK-resistant targets. This effect was found to require cell-to-cell contact and to be mediated by DC surface-bound IL-15. This study shows that DCs can express a membrane-bound form of IL-15 through which they enhance NK cell cytotoxic function. The observed lack of membrane-bound IL-15 on “gold-standard” IL-4 DCs and their consequent inability to effectively promote NK cell cytotoxicity may have important implications for the future design of DC-based cancer vaccine studies.


OncoImmunology | 2015

Empowering gamma delta T cells with antitumor immunity by dendritic cell-based immunotherapy

Heleen H. Van Acker; Sébastien Anguille; Viggo Van Tendeloo; Eva Lion

Gamma delta (γδ) T cells are the all-rounders of our immune-system with their major histocompatibility complex-unrestricted cytotoxicity, capacity to secrete immunosti-mulatory cytokines and ability to promote the generation of tumor antigen-specific CD8+ and CD4+ T cell responses. Dendritic cell (DC)-based vaccine therapy has the prospective to harness these unique features of the γδ T cells in the fight against cancer. In this review, we will discuss our current knowledge on DC-mediated γδ T cell activation and related opportunities for tumor immunologists.


OncoImmunology | 2013

Interferon α may be back on track to treat acute myeloid leukemia

Evelien Smits; Sébastien Anguille; Zwi N. Berneman

Our own experience and a thorough literature review suggest that interferon α (IFNα) should be reconsidered for the treatment of acute myeloid leukemia patients. Most likely, the success of such treatment depends on the achievement of high serum levels of IFNα for several months, which can be obtained by using pegylated IFNα.

Collaboration


Dive into the Sébastien Anguille's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eva Lion

University of Antwerp

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Smits

University of Antwerp

View shared research outputs
Researchain Logo
Decentralizing Knowledge