Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sébastien Dutertre is active.

Publication


Featured researches published by Sébastien Dutertre.


Pharmacological Reviews | 2012

Conus Venom Peptide Pharmacology

Richard J. Lewis; Sébastien Dutertre; Irina Vetter; MacDonald J. Christie

Conopeptides are a diverse group of recently evolved venom peptides used for prey capture and/or defense. Each species of cone snails produces in excess of 1000 conopeptides, with those pharmacologically characterized (∼0.1%) targeting a diverse range of membrane proteins typically with high potency and specificity. The majority of conopeptides inhibit voltage- or ligand-gated ion channels, providing valuable research tools for the dissection of the role played by specific ion channels in excitable cells. It is noteworthy that many of these targets are found to be expressed in pain pathways, with several conopeptides having entered the clinic as potential treatments for pain [e.g., pyroglutamate1-MrIA (Xen2174)] and one now marketed for intrathecal treatment of severe pain [ziconotide (Prialt)]. This review discusses the diversity, pharmacology, structure-activity relationships, and therapeutic potential of cone snail venom peptide families acting at voltage-gated ion channels (ω-, μ-, μO-, δ-, ι-, and κ-conotoxins), ligand-gated ion channels (α-conotoxins, σ-conotoxin, ikot-ikot, and conantokins), G-protein-coupled receptors (ρ-conopeptides, conopressins, and contulakins), and neurotransmitter transporters (χ-conopeptides), with expanded discussion on the clinical potential of sodium and calcium channel inhibitors and α-conotoxins. Expanding the discovery of new bioactives using proteomic/transcriptomic approaches combined with high-throughput platforms and better defining conopeptide structure-activity relationships using relevant membrane protein crystal structures are expected to grow the already significant impact conopeptides have had as both research probes and leads to new therapies.


Nucleic Acids Research | 2012

ConoServer: updated content, knowledge, and discovery tools in the conopeptide database

Quentin Kaas; Rilei Yu; Ai-Hua Jin; Sébastien Dutertre; David J. Craik

ConoServer (http://www.conoserver.org) is a database specializing in the sequences and structures of conopeptides, which are toxins expressed by marine cone snails. Cone snails are carnivorous gastropods, which hunt their prey using a cocktail of toxins that potently subvert nervous system function. The ability of these toxins to specifically target receptors, channels and transporters of the nervous system has attracted considerable interest for their use in physiological research and as drug leads. Since the founding publication on ConoServer in 2008, the number of entries in the database has nearly doubled, the interface has been redesigned and new annotations have been added, including a more detailed description of cone snail species, biological activity measurements and information regarding the identification of each sequence. Automatically updated statistics on classification schemes, three-dimensional structures, conopeptide-bearing species and endoplasmic reticulum signal sequence conservation trends, provide a convenient overview of current knowledge on conopeptides. Transcriptomics and proteomics have began generating massive numbers of new conopeptide sequences, and two dedicated tools have been recently implemented in ConoServer to standardize the analysis of conopeptide precursor sequences and to help in the identification by mass spectrometry of toxins whose sequences were predicted at the nucleic acid level.


The EMBO Journal | 2007

Achbp-Targeted Alpha-Conotoxin Correlates Distinct Binding Orientations with Nachr Subtype Selectivity

Sébastien Dutertre; Chris Ulens; Regina Büttner; Alexander Fish; René van Elk; Yvonne Kendel; Gene Hopping; Paul F. Alewood; Christina I. Schroeder; Annette Nicke; August B. Smit; Titia K. Sixma; Richard J. Lewis

Neuronal nAChRs are a diverse family of pentameric ion channels with wide distribution throughout cells of the nervous and immune systems. However, the role of specific subtypes in normal and pathological states remains poorly understood due to the lack of selective probes. Here, we used a binding assay based on acetylcholine‐binding protein (AChBP), a homolog of the nicotinic acetylcholine ligand‐binding domain, to discover a novel α‐conotoxin (α‐TxIA) in the venom of Conus textile. α‐TxIA bound with high affinity to AChBPs from different species and selectively targeted the α3β2 nAChR subtype. A co‐crystal structure of Ac‐AChBP with the enhanced potency analog TxIA(A10L), revealed a 20° backbone tilt compared to other AChBP–conotoxin complexes. This reorientation was coordinated by a key salt bridge formed between Arg5 (TxIA) and Asp195 (Ac‐AChBP). Mutagenesis studies, biochemical assays and electrophysiological recordings directly correlated the interactions observed in the co‐crystal structure to binding affinity at AChBP and different nAChR subtypes. Together, these results establish a new pharmacophore for the design of novel subtype‐selective ligands with therapeutic potential in nAChR‐related diseases.


Molecular & Cellular Proteomics | 2013

Deep Venomics Reveals the Mechanism for Expanded Peptide Diversity in Cone Snail Venom

Sébastien Dutertre; Ai-Hua Jin; Quentin Kaas; Alun Jones; Paul F. Alewood; Richard J. Lewis

Cone snails produce highly complex venom comprising mostly small biologically active peptides known as conotoxins or conopeptides. Early estimates that suggested 50–200 venom peptides are produced per species have been recently increased at least 10-fold using advanced mass spectrometry. To uncover the mechanism(s) responsible for generating this impressive diversity, we used an integrated approach combining second-generation transcriptome sequencing with high sensitivity proteomics. From the venom gland transcriptome of Conus marmoreus, a total of 105 conopeptide precursor sequences from 13 gene superfamilies were identified. Over 60% of these precursors belonged to the three gene superfamilies O1, T, and M, consistent with their high levels of expression, which suggests these conotoxins play an important role in prey capture and/or defense. Seven gene superfamilies not previously identified in C. marmoreus, including five novel superfamilies, were also discovered. To confirm the expression of toxins identified at the transcript level, the injected venom of C. marmoreus was comprehensively analyzed by mass spectrometry, revealing 2710 and 3172 peptides using MALDI and ESI-MS, respectively, and 6254 peptides using an ESI-MS TripleTOF 5600 instrument. All conopeptides derived from transcriptomic sequences could be matched to masses obtained on the TripleTOF within 100 ppm accuracy, with 66 (63%) providing MS/MS coverage that unambiguously confirmed these matches. Comprehensive integration of transcriptomic and proteomic data revealed for the first time that the vast majority of the conopeptide diversity arises from a more limited set of genes through a process of variable peptide processing, which generates conopeptides with alternative cleavage sites, heterogeneous post-translational modifications, and highly variable N- and C-terminal truncations. Variable peptide processing is expected to contribute to the evolution of venoms, and explains how a limited set of ∼ 100 gene transcripts can generate thousands of conopeptides in a single species of cone snail.


Journal of Biological Chemistry | 2010

Use of Venom Peptides to Probe Ion Channel Structure and Function

Sébastien Dutertre; Richard J. Lewis

Venoms of snakes, scorpions, spiders, insects, sea anemones, and cone snails are complex mixtures of mostly peptides and small proteins that have evolved for prey capture and/or defense. These deadly animals have long fascinated scientists and the public. Early studies isolated lethal components in the search for cures and understanding of their mechanisms of action. Ion channels have emerged as targets for many venom peptides, providing researchers highly selective and potent molecular probes that have proved invaluable in unraveling ion channel structure and function. This minireview highlights molecular details of their toxin-receptor interactions and opportunities for development of peptide therapeutics.


Nature Communications | 2014

Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails.

Sébastien Dutertre; Ai-Hua Jin; Irina Vetter; Brett Hamilton; Kartik Sunagar; Vincent Lavergne; Valentin Dutertre; Bryan G. Fry; Agostinho Antunes; Deon J. Venter; Paul F. Alewood; Richard J. Lewis

Venomous animals are thought to inject the same combination of toxins for both predation and defence, presumably exploiting conserved target pharmacology across prey and predators. Remarkably, cone snails can rapidly switch between distinct venoms in response to predatory or defensive stimuli. Here, we show that the defence-evoked venom of Conus geographus contains high levels of paralytic toxins that potently block neuromuscular receptors, consistent with its lethal effects on humans. In contrast, C. geographus predation-evoked venom contains prey-specific toxins mostly inactive at human targets. Predation- and defence-evoked venoms originate from the distal and proximal regions of the venom duct, respectively, explaining how different stimuli can generate two distinct venoms. A specialized defensive envenomation strategy is widely evolved across worm, mollusk and fish-hunting cone snails. We propose that defensive toxins, originally evolved in ancestral worm-hunting cone snails to protect against cephalopod and fish predation, have been repurposed in predatory venoms to facilitate diversification to fish and mollusk diets.


Chemical Reviews | 2014

Discovery, synthesis, and structure: activity relationships of conotoxins

Kalyana B. Akondi; Markus Muttenthaler; Sébastien Dutertre; Quentin Kaas; David J. Craik; Richard J. Lewis; Paul F. Alewood

Peptide therapeutics are acclaimed as a promising addition to the pharmaceutical arena, and they continue to attract interest due to their high potency, bioavailability, and fewer concerns with toxicity, drug to drug cross-reactions, and tissue accumulation. Around 700 species of marine snails of the genus Conus are distributed throughout tropical and subtropical waters. As different species preferentially hunt fish, worms, or molluscs they are categorized as piscivorous, vermivorous, or molluscivorous, respectively, although some cone snail species can feed on more than one prey type. These slow-moving creatures evolved into predators through incorporation of a specialized envenomation apparatus that enables them to quickly subdue their fast-moving prey. Conotoxins target a wide range of receptors and ion channels with unparalleled potency and selectivity. They have consequently become the subject of intense research in light of their immense diagnostic and therapeutic potential and are the focus of this review.


Journal of Biological Chemistry | 2012

Inhibitory glycine receptors: an update

Sébastien Dutertre; Cord Michael Becker; Heinrich Betz

Strychnine-sensitive glycine receptors (GlyRs) mediate synaptic inhibition in the spinal cord, brainstem, and other regions of the mammalian central nervous system. In this minireview, we summarize our current view of the structure, ligand-binding sites, and chloride channel of these receptors and discuss recently emerging functions of distinct GlyR isoforms. GlyRs not only regulate the excitability of motor and afferent sensory neurons, including pain fibers, but also are involved in the processing of visual and auditory signals. Hence, GlyRs constitute promising targets for the development of therapeutically useful compounds.


Toxicon | 2012

High-resolution picture of a venom gland transcriptome: Case study with the marine snail Conus consors

Yves Terrat; Daniel Biass; Sébastien Dutertre; Philippe Favreau; Maido Remm; Reto Stöcklin; David Piquemal; Frédéric Ducancel

Although cone snail venoms have been intensively investigated in the past few decades, little is known about the whole conopeptide and protein content in venom ducts, especially at the transcriptomic level. If most of the previous studies focusing on a limited number of sequences have contributed to a better understanding of conopeptide superfamilies, they did not give access to a complete panorama of a whole venom duct. Additionally, rare transcripts were usually not identified due to sampling effect. This work presents the data and analysis of a large number of sequences obtained from high throughput 454 sequencing technology using venom ducts of Conus consors, an Indo-Pacific living piscivorous cone snail. A total of 213,561 Expressed Sequence Tags (ESTs) with an average read length of 218 base pairs (bp) have been obtained. These reads were assembled into 65,536 contiguous DNA sequences (contigs) then into 5039 clusters. The data revealed 11 conopeptide superfamilies representing a total of 53 new isoforms (full length or nearly full-length sequences). Considerable isoform diversity and major differences in transcription level could be noted between superfamilies. A, O and M superfamilies are the most diverse. The A family isoforms account for more than 70% of the conopeptide cocktail (considering all ESTs before clustering step). In addition to traditional superfamilies and families, minor transcripts including both cysteine free and cysteine-rich peptides could be detected, some of them figuring new clades of conopeptides. Finally, several sets of transcripts corresponding to proteins commonly recruited in venom function could be identified for the first time in cone snail venom duct. This work provides one of the first large-scale EST project for a cone snail venom duct using next-generation sequencing, allowing a detailed overview of the venom duct transcripts. This leads to an expanded definition of the overall cone snail venom duct transcriptomic activity, which goes beyond the cysteine-rich conopeptides. For instance, this study enabled to detect proteins involved in common post-translational maturation and folding, and to reveal compounds classically involved in hemolysis and mechanical penetration of the venom into the prey. Further comparison with proteomic and genomic data will lead to a better understanding of conopeptides diversity and the underlying mechanisms involved in conopeptide evolution.


Journal of Proteomics | 2009

Comparative proteomic study of the venom of the piscivorous cone snail Conus consors

Daniel Biass; Sébastien Dutertre; Alain Gerbault; Jean-Louis Menou; Robin E. Offord; Philippe Favreau; Reto Stöcklin

In the context of an exhaustive study of the piscivorous cone snail Conus consors, we performed an in-depth analysis of the intact molecular masses that can be detected in the animals venom, using MALDI and ESI mass spectrometry. We clearly demonstrated that, for the venom of this species at least, it is essential to use both techniques in order to obtain the broadest data set of molecular masses. Only 20% of the total number of molecules detected were found in both mass lists. The two data sets were also compared in terms of mass range and relative hydrophobicity of the components detected in each. With a view to an extensive analysis of this venoms proteome, we further performed a comparative study by ESI-MS between venom obtained after classical dissection of the venom duct versus venom obtained by milking live animals. Surprisingly, although many fewer components were found in the milked venom than in the dissected venom, approximately 50% of those found had not been seen in the dissected venom. Several questions raised by these observations are discussed. With regards to the current knowledge of the cone snail venom composition, our results emphasize the complementary nature of the mass spectrometry methods and of the two techniques used in venom collection.

Collaboration


Dive into the Sébastien Dutertre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ai-Hua Jin

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Irina Vetter

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge