Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sébastien Goutal is active.

Publication


Featured researches published by Sébastien Goutal.


Applied Radiation and Isotopes | 2012

[18F]DPA-714, [18F]PBR111 and [18F]FEDAA1106-selective radioligands for imaging TSPO 18 kDa with PET: automated radiosynthesis on a TRACERLAb FX-FN synthesizer and quality controls.

Bertrand Kuhnast; Annelaure Damont; F. Hinnen; Tony Catarina; Stéphane Demphel; Stéphane Le Helleix; Christine Coulon; Sébastien Goutal; Philippe Gervais; Frédéric Dollé

Imaging of TSPO 18 kDa with PET is more and more considered as a relevant biomarker of inflammation in numerous diseases. Development of new radiotracers for TSPO 18 kDa has seen acceleration in the last years and the challenge today is to make available large amounts of such a radiotracer in compliance with GMP standards for application in humans. We present in this technical note automated productions of [(18)F]DPA-714, [(18)F]PBR111 and [(18)F]FEDAA1106, three promising radiotracers for TSPO 18 kDa imaging, using a TRACERlab FX-FN synthesizer. This note also includes the quality control data of the validation batches for the manufacturing qualification of clinical production of [(18)F]DPA-714.


Drug Metabolism and Disposition | 2013

Metabolism and Quantification of [18F]DPA-714, a New TSPO Positron Emission Tomography Radioligand

Marie-Anne Peyronneau; Wadad Saba; Sébastien Goutal; Annelaure Damont; Frédéric Dollé; Michael Kassiou; Michel Bottlaender; Héric Valette

[18F]DPA-714 [N,N-diethyl-2-(2-(4-(2[18F]-fluoroethoxy)phenyl)5,7dimethylpyrazolo[1,5a]pyrimidin-3-yl)acetamide] is a new radioligand currently used for imaging the 18-kDa translocator protein in animal models of neuroinflammation and recently in humans. The biodistribution by positron emission tomography (PET) in baboons and the in vitro and in vivo metabolism of [18F]DPA-714 were investigated in rats, baboons, and humans. Whole-body PET experiments showed a high uptake of radioactivity in the kidneys, heart, liver, and gallbladder. The liver was a major route of elimination of [18F]DPA-714, and urine was a route of excretion for radiometabolites. In rat and baboon plasma, high-performance liquid chromatography (HPLC) metabolic profiles showed three major radiometabolites accounting for 85% and 89% of total radioactivity at 120 minutes after injection, respectively. Rat microsomal incubations and analyses by liquid chromatography–mass spectrometry (LC-MS) identified seven metabolites, characterized as O-deethyl, hydroxyl, and N-deethyl derivatives of nonradioactive DPA-714, two of them having the same retention times than those detected in rat and baboon plasma. The third plasma radiometabolite was suggested to be a carboxylic acid compound that accounted for 15% of the rat brain radioactivity. O-deethylation led to a nonradioactive compound and [18F]fluoroacetic acid. Human CYP3A4 and CYP2D6 were shown to be involved in the oxidation of the radioligand. Finally an easy, rapid, and accurate method—indispensable for PET quantitative clinical studies—for quantifying [18F]DPA-714 by solid-phase extraction was developed. In vivo, an extensive metabolism of [18F]DPA-714 was observed in rats and baboons, identified as [18F]deethyl, [18F]hydroxyl, and [18F]carboxylic acid derivatives of [18F]DPA-714. The main route of excretion of the unchanged radioligand in baboons was hepatobiliary while that of radiometabolites was the urinary system.


The Journal of Nuclear Medicine | 2011

Transport of Selected PET Radiotracers by Human P-Glycoprotein (ABCB1) and Breast Cancer Resistance Protein (ABCG2): An In Vitro Screening

Nicolas Tournier; Héric Valette; Marie-Anne Peyronneau; Wadad Saba; Sébastien Goutal; Bertrand Kuhnast; Frédéric Dollé; Jean-Michel Scherrmann; Salvatore Cisternino; Michel Bottlaender

Radiolabeled compounds used for brain imaging with PET must readily cross the blood–brain barrier (BBB) to reach their target. Efflux transporters at the BBB—P-glycoprotein (P-gp) and the breast cancer resistance protein (BCRP)—could limit their uptake by the brain. Methods: We developed and validated an in vitro model using MDCKII cells transfected with human multidrug resistance (MDR1) or BCRP genes and assessed the transport of selected PET ligands by the concentration equilibrium technique. The tested compounds included befloxatone, (R,S)-CGP-12177, clorgyline, R-(−)-deprenyl, diprenorphine, DPA-714, fallypride, flumazenil, 2-fluoro-A-85380, LBT-999, loperamide, p-MPPF, PE2I, Pittsburgh compound B (PIB), (R,S)-PK11195, raclopride, R-(+)-verapamil, and WAY-100635. The assays were performed using the nonradioactive form of each compound (ultraviolet high-performance liquid chromatography analysis) and, when available, the 18F-labeled analogs (γ-counting). Results: Befloxatone appeared to be transported solely by BCRP. Loperamide, verapamil, and diprenorphine were the only P-gp substrates. Other ligands were transported by neither P-gp nor BCRP. Conclusion: The present method can readily be used to screen new-compound transport by P-gp or BCRP, even before any radiolabeling. Compounds that were previously thought to be transported by P-gp in rodents, such as p-MPPF, WAY-100635, and flumazenil, cannot be considered substrates of human P-gp. The impact of BCRP and P-gp at the BBB on the transport of befloxatone and diprenorphine in vivo remains to be evaluated with PET.


Aaps Journal | 2013

Effects of Selected OATP and/or ABC Transporter Inhibitors on the Brain and Whole-Body Distribution of Glyburide

Nicolas Tournier; Wadad Saba; Salvatore Cisternino; Marie-Anne Peyronneau; Annelaure Damont; Sébastien Goutal; Albertine Dubois; Frédéric Dollé; Jean-Michel Scherrmann; Héric Valette; Bertrand Kuhnast; Michel Bottlaender

Glyburide (glibenclamide, GLB) is a widely prescribed antidiabetic with potential beneficial effects in central nervous system injury and diseases. In vitro studies show that GLB is a substrate of organic anion transporting polypeptide (OATP) and ATP-binding cassette (ABC) transporter families, which may influence GLB distribution and pharmacokinetics in vivo. In the present study, we used [11C]GLB positron emission tomography (PET) imaging to non-invasively observe the distribution of GLB at a non-saturating tracer dose in baboons. The role of OATP and P-glycoprotein (P-gp) in [11C]GLB whole-body distribution, plasma kinetics, and metabolism was assessed using the OATP inhibitor rifampicin and the dual OATP/P-gp inhibitor cyclosporine. Finally, we used in situ brain perfusion in mice to pinpoint the effect of ABC transporters on GLB transport at the blood–brain barrier (BBB). PET revealed the critical role of OATP on liver [11C]GLB uptake and its subsequent impact on [11C]GLB metabolism and plasma clearance. OATP-mediated uptake also occurred in the myocardium and kidney parenchyma but not the brain. The inhibition of P-gp in addition to OATP did not further influence [11C]GLB tissue and plasma kinetics. At the BBB, the inhibition of both P-gp and breast cancer resistance protein (BCRP) was necessary to demonstrate the role of ABC transporters in limiting GLB brain uptake. This study demonstrates that GLB distribution, metabolism, and elimination are greatly dependent on OATP activity, the first step in GLB hepatic clearance. Conversely, P-gp, BCRP, and probably multidrug resistance protein 4 work in synergy to limit GLB brain uptake.


Pharmaceutical Research | 2012

Discrepancies in the P-glycoprotein-Mediated Transport of 18F-MPPF: A Pharmacokinetic Study in Mice and Non-human Primates

Nicolas Tournier; Salvatore Cisternino; Marie-Anne Peyronneau; Sébastien Goutal; Frédéric Dollé; Jean-Michel Scherrmann; Michel Bottlaender; Wadad Saba; Héric Valette

PurposeSeveral in vivo studies have found that the 5-HT1A PET radioligand 18F-MPPF is a substrate of rodent P-glycoprotein (P-gp). However, in vitro assays suggest that MPPF is not a substrate of human P-gp. We have now tested the influence of inhibiting P-gp on the brain kinetics of 18F-MPPF in mice and non-human primates.MethodsWe measured the peripheral kinetics (arterial input function, metabolism, free fraction in plasma (fP)) during 18F-MPPF brain PET scanning in baboons with or without cyclosporine A (CsA) infusion. We measured 3H-MPPF transport at the mouse BBB using in situ brain perfusion in P-gp/Bcrp deficient mice and after inhibiting P-gp with PSC833.ResultsThere was an unexpected 1.9-fold increase in brain area under the curve in CsA-treated baboons (n = 4), with no change in radiometabolite-corrected arterial input. However, total volume of distribution corrected for fP (VT/fP) remained unchanged. In situ brain perfusion showed that P-gp restricted the permeability of the mouse BBB to 3H-MPPF while Bcrp did not.ConclusionThese and previous in vitro results suggest that P-gp may not influence the permeability of human BBB to 18F-MPPF. However, CsA treatment increased 18F-MPPF free fraction, which is responsible for a misleading, P-gp unrelated enhanced brain uptake.


The Journal of Nuclear Medicine | 2017

Strategies to Inhibit ABCB1- and ABCG2-Mediated Efflux Transport of Erlotinib at the Blood–Brain Barrier: A PET Study on Nonhuman Primates

Nicolas Tournier; Sébastien Goutal; Sylvain Auvity; Alexander Traxl; Severin Mairinger; Thomas Wanek; Ourkia-Badia Helal; Irène Buvat; Michaël Soussan; Fabien Caillé; Oliver Langer

The tyrosine kinase inhibitor erlotinib poorly penetrates the blood–brain barrier (BBB) because of efflux transport by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2), thereby limiting its utility in the treatment of non–small cell lung cancer metastases in the brain. Pharmacologic strategies to inhibit ABCB1/ABCG2-mediated efflux transport at the BBB have been successfully developed in rodents, but it remains unclear whether these can be translated to humans given the pronounced species differences in ABCG2/ABCB1 expression ratios at the BBB. We assessed the efficacy of two different ABCB1/ABCG2 inhibitors to enhance brain distribution of 11C-erlotinib in nonhuman primates as a model of the human BBB. Methods: Papio anubis baboons underwent PET scans of the brain after intravenous injection of 11C-erlotinib under baseline conditions (n = 4) and during intravenous infusion of high-dose erlotinib (10 mg/kg/h, n = 4) or elacridar (12 mg/kg/h, n = 3). Results: Under baseline conditions, 11C-erlotinib distribution to the brain (total volume of distribution [VT], 0.22 ± 0.015 mL/cm3) was markedly lower than its distribution to muscle tissue surrounding the skull (VT, 0.86 ± 0.10 mL/cm3). Elacridar infusion resulted in a 3.5 ± 0.9-fold increase in 11C-erlotinib distribution to the brain (VT, 0.81 ± 0.21 mL/cm3, P < 0.01), reaching levels comparable to those in muscle tissue, without changing 11C-erlotinib plasma pharmacokinetics. During high-dose erlotinib infusion, 11C-erlotinib brain distribution was also significantly (1.7 ± 0.2-fold) increased (VT, 0.38 ± 0.033 mL/cm3, P < 0.05), with a concomitant increase in 11C-erlotinib plasma exposure. Conclusion: We successfully implemented ABCB1/ABCG2 inhibition protocols in nonhuman primates resulting in pronounced increases in brain distribution of 11C-erlotinib. For patients with brain tumors, such inhibition protocols may ultimately be applied to create more effective treatments using drugs that undergo efflux transport at the BBB.


The Journal of Nuclear Medicine | 2016

Imaging the impact of the P-glycoprotein (ABCB1) function on the brain kinetics of metoclopramide

Géraldine Pottier; Solène Marie; Sébastien Goutal; Sylvain Auvity; Marie-Anne Peyronneau; Simon Stute; Raphaël Boisgard; Frédéric Dollé; Irène Buvat; Fabien Caillé; Nicolas Tournier

The effects of metoclopramide on the central nervous system (CNS) in patients suggest substantial brain distribution. Previous data suggest that metoclopramide brain kinetics may nonetheless be controlled by ATP-binding cassette (ABC) transporters expressed at the blood–brain barrier. We used 11C-metoclopramide PET imaging to elucidate the kinetic impact of transporter function on metoclopramide exposure to the brain. Methods: 11C-metoclopramide transport by P-glycoprotein (P-gp; ABCB1) and the breast cancer resistance protein (BCRP; ABCG2) was tested using uptake assays in cells overexpressing P-gp and BCRP. 11C-metoclopramide brain kinetics were compared using PET in rats (n = 4–5) in the absence and presence of a pharmacologic dose of metoclopramide (3 mg/kg), with or without P-gp inhibition using intravenous tariquidar (8 mg/kg). The 11C-metoclopramide brain distribution (VT based on Logan plot analysis) and brain kinetics (2-tissue-compartment model) were characterized with either a measured or an imaged-derived input function. Plasma and brain radiometabolites were studied using radio–high-performance liquid chromatography analysis. Results: 11C-metoclopramide transport was selective for P-gp over BCRP. Pharmacologic dose did not affect baseline 11C-metoclopramide brain kinetics (VT = 2.28 ± 0.32 and 2.04 ± 0.19 mL⋅cm−3 using microdose and pharmacologic dose, respectively). Tariquidar significantly enhanced microdose 11C-metoclopramide VT (7.80 ± 1.43 mL⋅cm−3) with a 4.4-fold increase in K1 (influx rate constant) and a 2.3-fold increase in binding potential (k3/k4) in the 2-tissue-compartment model. In the pharmacologic situation, P-gp inhibition significantly increased metoclopramide brain distribution (VT = 6.28 ± 0.48 mL⋅cm−3) with a 2.0-fold increase in K1 and a 2.2-fold decrease in k2 (efflux rate), with no significant impact on binding potential. In this situation, only parent 11C-metoclopramide could be detected in the brains of P-gp–inhibited rats. Conclusion: 11C-metoclopramide benefits from favorable pharmacokinetic properties that offer reliable quantification of P-gp function at the blood–brain barrier in a pharmacologic situation. Using metoclopramide as a model of CNS drug, we demonstrated that P-gp function not only reduces influx but also mediates the efflux from the brain back to the blood compartment, with additional impact on brain distribution. This PET-based strategy of P-gp function investigation may provide new insight on the contribution of P-gp to the variability of response to CNS drugs between patients.


European Journal of Pharmaceutical Sciences | 2013

[11C]befloxatone brain kinetics is not influenced by Bcrp function at the blood–brain barrier: A PET study using Bcrp TGEM knockout rats

Benoit Hosten; Raphaël Boisgard; Aude Jacob; Sébastien Goutal; Bruno Saubaméa; Frédéric Dollé; Jean-Michel Scherrmann; Salvatore Cisternino; Nicolas Tournier

Knockout (KO) animals are useful tools with which to assess the interplay between P-glycoprotein (P-gp; Abcb1) and the breast cancer resistance protein (Bcrp, Abcg2), two major ABC-transporters expressed at the blood-brain barrier (BBB). However, one major drawback of such deficient models is the possible involvement of compensation between transporters. In the present study, P-gp and Bcrp distribution in the brain as well as P-gp expression levels at the BBB were compared between the Bcrp TGEM KO rat model and the wild-type (WT) strain. Therefore, we used confocal microscopy of brain slices and western blot analysis of the isolated brain microvessels forming the BBB. This deficient rat model was used to assess the influence of Bcrp on the brain and peripheral kinetics of its substrate [(11)C]befloxatone using positron emission tomography (PET). The influence of additional P-gp inhibition was tested using elacridar (GF120918) 2 mg/kg in Bcrp KO rats. The distribution pattern of P-gp in the brain as well as P-gp expression levels at the BBB was similar in Bcrp-deficient and WT rats. Brain and peripheral kinetics of [(11)C]befloxatone were not influenced by the lack of Bcrp. Neither was the brain uptake of [(11)C]befloxatone in Bcrp-deficient rats influenced by the inhibition of P-gp. In conclusion, the Bcrp-deficient rat strain, in which we detected no compensatory mechanism or modification of P-gp expression as compared to WT rats, is a suitable model to study Bcrp function separately from that of P-gp at the BBB. However, although selectively transported by BCRP in vitro, our results suggest that [(11)C]befloxatone PET imaging might not be biased by impaired function of this transporter in vivo.


European Journal of Neuroscience | 2015

Differential influence of propofol and isoflurane anesthesia in a non-human primate on the brain kinetics and binding of [18F]DPA-714, a positron emission tomography imaging marker of glial activation

Wadad Saba; Sébastien Goutal; Bertrand Kuhnast; Frédéric Dollé; Sylvain Auvity; Yoan Fontyn; Jérôme Cayla; Marie-Anne Peyronneau; Héric Valette; Nicolas Tournier

Translocator protein 18 kDa (TSPO) expression at the mitochondrial membrane of glial cells is related to glial activation. TSPO radioligands such as [18F]DPA‐714 are useful for the non‐invasive study of neuroimmune processes using positron emission tomography (PET). Anesthetic agents were shown to impact mitochondrial function and may influence [18F]DPA‐714 binding parameters and PET kinetics. [18F]DPA‐714 PET imaging was performed in Papio anubis baboons anesthetized using either intravenous propofol (n = 3) or inhaled isoflurane (n = 3). Brain kinetics and metabolite‐corrected input function were measured to estimate [18F]DPA‐714 brain distribution (VT). Displacement experiments were performed using PK11195 (1.5 mg/kg). In vitro [18F]DPA‐714 binding experiments were performed using baboon brain tissue in the absence and presence of tested anesthetics. Brain radioactivity peaked higher in isoflurane‐anesthetized animals compared with propofol (SUVmax = 2.7 ± 0.5 vs. 1.3 ± 0.2, respectively) but was not different after 30 min. Brain VT was not different under propofol and isoflurane. Displacement resulted in a 35.8 ± 8.4% decrease of brain radioactivity under propofol but not under isoflurane (0.1 ± 7.0%). In vitro, the presence of propofol increased TSPO density and dramatically reduced its affinity for [18F]DPA‐714 compared with control. This in vitro effect was not significant with isoflurane. Exposure to propofol and isoflurane differentially influences TSPO interaction with its specific radioligand [18F]DPA‐714 with subsequent impact on its tissue kinetics and specific binding estimated in vivo using PET. Therefore, the choice of anesthetics and their potential influence on PET data should be considered for the design of imaging studies using TSPO radioligands, especially in a translational research context.


Journal of Cerebral Blood Flow and Metabolism | 2017

Diphenhydramine as a selective probe to study H+-antiporter function at the blood-brain barrier: Application to [11C]diphenhydramine positron emission tomography imaging.

Sylvain Auvity; Hélène Chapy; Sébastien Goutal; Fabien Caillé; Benoit Hosten; Maria Smirnova; Xavier Declèves; Nicolas Tournier; Salvatore Cisternino

Diphenhydramine, a sedative histamine H1-receptor (H1R) antagonist, was evaluated as a probe to measure drug/H+-antiporter function at the blood–brain barrier. In situ brain perfusion experiments in mice and rats showed that diphenhydramine transport at the blood–brain barrier was saturable, following Michaelis–Menten kinetics with a Km = 2.99 mM and Vmax = 179.5 nmol s−1 g−1. In the pharmacological plasma concentration range the carrier-mediated component accounted for 77% of diphenhydramine influx while passive diffusion accounted for only 23%. [14C]Diphenhydramine blood–brain barrier transport was proton and clonidine sensitive but was influenced by neither tetraethylammonium, a MATE1 (SLC47A1), and OCT/OCTN (SLC22A1-5) modulator, nor P-gp/Bcrp (ABCB1a/1b/ABCG2) deficiency. Brain and plasma kinetics of [11C]diphenhydramine were measured by positron emission tomography imaging in rats. [11C]Diphenhydramine kinetics in different brain regions were not influenced by displacement with 1 mg kg−1 unlabeled diphenhydramine, indicating the specificity of the brain positron emission tomography signal for blood–brain barrier transport activity over binding to any central nervous system target in vivo. [11C]Diphenhydramine radiometabolites were not detected in the brain 15 min after injection, allowing for the reliable calculation of [11C]diphenhydramine brain uptake clearance (Clup = 0.99 ± 0.18 mL min−1 cm−3). Diphenhydramine is a selective and specific H+-antiporter substrate. [11C]Diphenhydramine positron emission tomography imaging offers a reliable and noninvasive method to evaluate H+-antiporter function at the blood–brain barrier.

Collaboration


Dive into the Sébastien Goutal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sylvain Auvity

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

Héric Valette

French Alternative Energies and Atomic Energy Commission

View shared research outputs
Top Co-Authors

Avatar

Fabien Caillé

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge