Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastien Leclair is active.

Publication


Featured researches published by Sebastien Leclair.


Biomedical Optics Express | 2014

Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink

L. Spinelli; Marcin Botwicz; Norbert Zolek; Michal Kacprzak; Daniel Milej; Piotr Sawosz; Adam Liebert; Udo M. Weigel; Turgut Durduran; Florian Foschum; Alwin Kienle; Francois Baribeau; Sebastien Leclair; J-P Bouchard; Isabelle Noiseux; Pascal Gallant; Ozzy Mermut; Andrea Farina; Antonio Pifferi; Alessandro Torricelli; Rinaldo Cubeddu; H-C Ho; Mikhail Mazurenka; Heidrun Wabnitz; Katy Klauenberg; Olha Bodnar; Clemens Elster; M. Benazech-Lavoue; Yves Bérubé-Lauzière; Frédéric Lesage

A multi-center study has been set up to accurately characterize the optical properties of diffusive liquid phantoms based on Intralipid and India ink at near-infrared (NIR) wavelengths. Nine research laboratories from six countries adopting different measurement techniques, instrumental set-ups, and data analysis methods determined at their best the optical properties and relative uncertainties of diffusive dilutions prepared with common samples of the two compounds. By exploiting a suitable statistical model, comprehensive reference values at three NIR wavelengths for the intrinsic absorption coefficient of India ink and the intrinsic reduced scattering coefficient of Intralipid-20% were determined with an uncertainty of about 2% or better, depending on the wavelength considered, and 1%, respectively. Even if in this study we focused on particular batches of India ink and Intralipid, the reference values determined here represent a solid and useful starting point for preparing diffusive liquid phantoms with accurately defined optical properties. Furthermore, due to the ready availability, low cost, long-term stability and batch-to-batch reproducibility of these compounds, they provide a unique fundamental tool for the calibration and performance assessment of diffuse optical spectroscopy instrumentation intended to be used in laboratory or clinical environment. Finally, the collaborative work presented here demonstrates that the accuracy level attained in this work for optical properties of diffusive phantoms is reliable.


Infrared Detectors and Focal Plane Arrays VII | 2002

Commercial and custom 160x120, 256x1, and 512x3 pixel bolometric FPAs

Timothy D. Pope; Hubert Jerominek; Christine Alain; Felix Cayer; Bruno Tremblay; Carol Grenier; Patrice Topart; Sebastien Leclair; Francis Picard; Carl Larouche; Bernard Boulanger; Ann Martel; Yan Desroches

INO has been active in microbolometer and FPA technology development since the early 1990s. Microbolometer detectors based on VO2 films with TCR above 3% are typically fabricated. VOx films with TCR above 2% have been developed for applications where FPA temperature is not stabilized. INO is continuing its development of high fill factor pixels with sizes down to 25 micrometers and new macro- and micro-packaging technology. All fabrication is done on six inch wafers in INOs newly expanded clean room facility. INO currently offers as standard products 256x1 and 160x120 pixel FPAs with 52 micrometers pixel pitch. Both arrays have simple, robust, and versatile CMOS readout integrated circuits (ROICs) that may be accessed in self-scanning or random access mode, and reference detectors for on-chip coarse offset and temperature drift compensation. Single frame NETDs (f/1, 300 K, 8-12 micrometers ) are on the order of 150 - 250 mK and may be reduced by frame averaging. Prototyping boards have been developed for both arrays, and the 160x120 FPA has been integrated in a number of thermal cameras and instruments. In collaboration with its clients, INO has developed several FPAs for specific space and terrestrial applications. Custom ROICs fabricated in several different CMOS processes from multiple foundries have been used. A 512x3 pixel microbolometer FPA with 39 micrometers pitch is being developed for the European Space Agency. The array is designed for multi-spectral pushbroom imaging applications and features a novel ROIC with very low 1/f noise, pixel by pixel offset and drift compensation, variable integration time, and digital output. Its single frame NETD (f/1, 300 K, 8-12 micrometers ) is nominally 80 mK.


Bios | 2010

Design and modeling of a prototype fiber scanning CARS endoscope

Israel Veilleux; Michel Doucet; Patrice Coté; Sonia Verreault; Michel Fortin; Patrick Paradis; Sebastien Leclair; Ralph S. Da Costa; Brian C. Wilson; Eric J. Seibel; Ozzy Mermut; Jean François Cormier

An endoscope capable of Coherent Anti-Stokes Raman scattering (CARS) imaging would be of significant clinical value for improving early detection of endoluminal cancers. However, developing this technology is challenging for many reasons. First, nonlinear imaging techniques such as CARS are single point measurements thus requiring fast scanning in a small footprint if video rate is to be achieved. Moreover, the intrinsic nonlinearity of this modality imposes several technical constraints and limitations, mainly related to pulse and beam distortions that occur within the optical fiber and the focusing objective. Here, we describe the design and report modeling results of a new CARS endoscope. The miniature microscope objective design and its anticipated performance are presented, along with its compatibility with a new spiral scanningfiber imaging technology developed at the University of Washington. This technology has ideal attributes for clinical use, with its small footprint, adjustable field-of-view and high spatial-resolution. This compact hybrid fiber-based endoscopic CARS imaging design is anticipated to have a wide clinical applicability.


Journal of Biomedical Optics | 2008

Effect of liposomal confinement on photochemical properties of photosensitizers with varying hydrophilicity

Isabelle Noiseux; Ozzy Mermut; Jean-Pierre Bouchard; Jean-François Cormier; Patrice Desroches; Michel Fortin; Pascal Gallant; Sebastien Leclair; Marcia L. Vernon; Kevin R. Diamond; Michael S. Patterson

Preferential tumor localization and the aggregation state of photosensitizers (PSs) can depend on the hydrophilic/hydrophobic nature of the molecule and affect their phototoxicity. In this study, three PSs of different hydrophilicity are introduced in liposomes to understand the structure-photochemistry relationship of PSs in this cellular model system. Absorbance and fluorescence spectra of amphiphilic aluminum (III) phthalocyanine disulfonate chloride adjacent isomer (Al-2), hydrophilic aluminum (III) phthalocyanine chloride tetrasulfonic acid (Al-4), and lipophilic 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide (HPPH) are compared in a liposomal confined state with free PS in bulk solution. For fluorescence measurements, a broad range of concentrations of both bulk and liposomal confined PSs are examined to track the transition from monomers to dimers or higher order aggregates. Epifluorescence microscopy, absorbance, and fluorescence measurements all confirm different localization of the PSs in liposomes, depending on their hydrophilicity. In turn, the localization affects the aggregation of molecules inside the liposome cell model. Data obtained with such cellular models could be useful in optimizing the photochemical properties of photosensitizing drugs based on their structure-dependent interactions with cellular media and subcellular organelles.


IEEE Transactions on Biomedical Engineering | 2012

Inter-Laboratory Comparison of Optical Properties Performed on Intralipid and India Ink

Lorenzo Spinelli; Marcin Botwicz; Norbert Zolek; Michal Kacprzak; Daniel Milej; Adam Liebert; Udo M. Weigel; Turgut Durduran; Florian Foschum; Alwin Kienle; Francois Baribeau; Sebastien Leclair; Jean-Pierre Bouchard; Isabelle Noiseux; Pascal Gallant; Ozzy Mermut; Antonio Pifferi; Alessandro Torricelli; Rinaldo Cubeddu; Hsin-Chia Ho; Mikhail Mazurenka; Heidrun Wabnitz; Katy Klauenberg; Olha Bodnar; Clemens Elster; Magali Bénazech-Lavoué; Yves Bérubé-Lauzière; Frédéric Lesage; Paola Di Ninni; Fabrizio Martelli

Intrinsic reduced scattering coefficient of Intralipid and intrinsic absorption coefficient of Indian ink at NIR wavelengths are accurately assessed in a multi-center study involving different techniques, instrumental set-ups, and analysis methods.


Journal of Biomedical Optics | 2008

Effect of liposomal confinement on photothermal and photo-oximetric fluorescence lifetimes of photosensitizers with varying hydrophilicity

Ozzy Mermut; Isabelle Noiseux; Jean-Pierre Bouchard; Jean-François Cormier; Patrice Desroches; Michel Fortin; Pascal Gallant; Sebastien Leclair; Marcia L. Vernon; Kevin R. Diamond; Michael S. Patterson

The time-resolved fluorescence of photosensitizers (PSs) of varying hydrophobicities, di-and tetrasulfonated Al phthalocyanines (Al-2 and Al-4), and Photochlor (HPPH), was investigated in liposomes used as cell-mimetic models. Using frequency-and time-domain apparatus, the fluorescence lifetime, tau(fluo), was compared for PSs free in aqueous solution and in a liposome-associated state at varied temperatures (25 to 78 degrees C) and oxygen concentrations (0-190 microM). The analysis of tau(fluo) revealed different decay behaviors for the free-solution and liposome-confined PSs, most significantly for the lipophilic HPPH. Hydrophilic PS drugs (Al-4, Al-2) were less affected by the liposomal confinement, depending on the relative hydrophilicity of the compound and the consequent localization in liposomes. Changes in the emission decay due to confinement were detected as differences in the lifetime between the bulk solution and the liposome-localized PS in response to heating and deoxygenation. Specifically, hydrophilic Al-4 produced an identical lifetime trend as a function of temperature both in solu and in a liposome-confined state. Hydrophobic HPPH exhibited a fundamental transformation in its fluorescence decay kinetics, transitioning from a multiexponential (in free solution) to single-exponential (in liposome) decay. Deoxygenation resulted in a ubiquitous tau(fluo) increase for all PSs in free solution, while the opposite, a tau(fluo) decrease, occurred in all liposomal PSs.


Bios | 2010

Development of optical phantoms for use in fluorescence-based imaging

Isabelle Noiseux; Michel Fortin; Sebastien Leclair; Jocelyne Osouf; Ozzy Mermut

We fabricated permanent solid polyurethane-based phantoms in which fluorophores were homogeneously incorporated. For this study, fluorophores of three different families were used: Cyanines, Alexa Fluor and Quantum Dots. The goal of this study was to evaluate the impact of casting the fluorophores in a polyurethane matrix on their optical properties, more specifically the absorbance, molecular extinction coefficient, emission of fluorescence and the resultant fluorescence intensity. All measurements were carried out with 5 concentrations of each fluorophores embedded in polyurethane and in solution. Stability over time was also monitored for a three months period. The casting of fluorophores affects the optical properties of the three dyes under study. The max absorbance, the fluorescence emission and intensity along with the molar extinction coefficient were all affected. Quantum dots behave differently to the cyanine and Alexa Fluor dyes. It was also observed that the incorporation of dyes enables long-term stability of the fluorescence signal.


Proceedings of SPIE, the International Society for Optical Engineering | 2008

3D MOEMS-based optical micro-bench platform for the miniaturization of sensing devices

Sonia Garcia-Blanco; Jean-Sol Caron; Sebastien Leclair; Patrice Topart; Hubert Jerominek

As we enter into the 21st century, the need for miniaturized portable diagnostic devices is increasing continuously. Portable devices find important applications for point-of-care diagnostics, patient self-monitoring and in remote areas, such as unpopulated regions where the cost of large laboratory facilities is not justifiable, underdeveloped countries and other remote locations such as space missions. The advantage of miniaturized sensing optical systems includes not only the reduced weight and size but also reduced cost, decreased time to results and robustness (e.g. no need for frequent re-alignments). Recent advances in micro-fabrication and assembly technologies have enabled important developments in the field of miniaturized sensing systems. INO has developed a technology platform for the three dimensional integration of MOEMS on an optical microbench. Building blocks of the platform include microlenses, micromirrors, dichroic beamsplitters, filters and optical fibers, which can be positioned using passive alignment structures to build the desired miniaturised system. The technology involves standard microfabrication, thick resist UV-lithography, thick metal electroplating, soldering, replication in sol-gel materials and flip-chip bonding processes. The technology is compatible with wafer-to-wafer bonding. A placement accuracy of ± 5 μm has been demonstrated thanks to the integration of alignment marks co registered with other optical elements fabricated on different wafers. In this paper, the building blocks of the technology will be detailed. The design and fabrication of a 5x5 channels light processing unit including optical fibers, mirrors and collimating microlenses will be described. Application of the technology to various kinds of sensing devices will be discussed.


Proceedings of SPIE | 2008

Time-resolved luminescence measurements of the magnetic field effect on paramagnetic photosensitizers in photodynamic reactions

O. Mermut; J-P. Bouchard; J-F. Cormier; Patrice Desroches; Kevin R. Diamond; Michel Fortin; Pascal Gallant; Sebastien Leclair; J-S. Marois; Isabelle Noiseux; J-F. Morin; Michael S. Patterson; Marcia Vernon

The development of multimodal molecular probes and photosensitizing agents for use in photodynamic therapy (PDT) is vital for optimizing and monitoring cytotoxic responses. We propose a combinatorial approach utilizing photosensitizing molecules that are both paramagnetic and luminescent with multimodal functionality to perturb, control, and monitor molecular-scale reaction pathways in PDT. To this end, a time-domain single photon counting lifetime apparatus with a 400 nm excitation source has been developed and integrated with a variable low field magnet (0- 350mT). The luminescence lifetime decay function was measured in the presence of a sweeping magnetic field for a custom designed photosensitizing molecule in which photoinduced electron transfer was studied The photosensitizer studied was a donor-acceptor complex synthesized using a porphyrin linked to a fullerene molecule. The magneto-optic properties were investigated for the free-base photosensitizer complex as well as those containing either diamagnetic (paired electron) or paramagnetic (unpaired electron) metal centers, Zn(II) and Cu(II). The magnetic field was employed to affect and modify the spin states of radical pairs of the photosensitizing agents via magnetically induced hyperfine and Zeeman effects. Since the Type 1 reaction pathway of an excited triplet state photosensitizer involves the production of radical species, lifetime measurements were conducted at low dissolved oxygen concentration (0.01ppm) to elucidate the dependence of the magnetic perturbation on the photosensitization mechanistic pathway. To optimize the magnetic response, a solvent study was performed examining the dependence of the emission properties on the magnetic field in solutions of varying dielectric constants. Lastly, the cytotoxicity in murine tumor cell suspensions was investigated for the novel porphyrin-fullerene complex by inducing photodynamic treatments and determining the associated cell survival.


Micromachining and microfabrication process technology. Conference | 2005

Design and fabrication of giant micromirrors using electroplating-based technology

Samir Ilias; Patrice Topart; Carl Larouche; Sebastien Leclair; Hubert Jerominek

Giant micromirrors with large scanning deflection and good flatness are required for many space and terrestrial applications. A novel approach to manufacturing this category of micromirrors is proposed. The approach combines selective electroplating and flip-chip based technologies. It allows for large air gaps, flat and smooth active micromirror surfaces and permits independent fabrication of the micromirrors and control electronics, avoiding temperature and sacrificial layer incompatibilities between them. In this work, electrostatically actuated piston and torsion micromirrors were designed and simulated. The simulated structures were designed to allow large deflection, i.e. piston displacement larger than 10 um and torsional deflection up to 35°. To achieve large micromirror deflections, up to seventy micron-thick resists were used as a micromold for nickel and solder electroplating. Smooth micromirror surfaces (roughness lower than 5 nm rms) and large radius of curvature (R as large as 23 cm for a typical 1000x1000 um2 micromirror fabricated without address circuits) were achieved. A detailed fabrication process is presented. First piston mirror prototypes were fabricated and a preliminary evaluation of static deflection of a piston mirror is presented.

Collaboration


Dive into the Sebastien Leclair's collaboration.

Top Co-Authors

Avatar

Ozzy Mermut

Institut National d'Optique

View shared research outputs
Top Co-Authors

Avatar

Patrice Topart

Institut National d'Optique

View shared research outputs
Top Co-Authors

Avatar

Hubert Jerominek

Institut National d'Optique

View shared research outputs
Top Co-Authors

Avatar

Isabelle Noiseux

Institut National d'Optique

View shared research outputs
Top Co-Authors

Avatar

Michel Fortin

Institut National d'Optique

View shared research outputs
Top Co-Authors

Avatar

Pascal Gallant

Institut National d'Optique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl Larouche

Institut National d'Optique

View shared research outputs
Researchain Logo
Decentralizing Knowledge