Sebo Withoff
University Medical Center Groningen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sebo Withoff.
Nature Genetics | 2013
Harm-Jan Westra; Marjolein J. Peters; Tonu Esko; Hanieh Yaghootkar; Johannes Kettunen; Mark W. Christiansen; Benjamin P. Fairfax; Katharina Schramm; Joseph E. Powell; Alexandra Zhernakova; Daria V. Zhernakova; Jan H. Veldink; Leonard H. van den Berg; Juha Karjalainen; Sebo Withoff; André G. Uitterlinden; Albert Hofman; Fernando Rivadeneira; Peter A. C. 't Hoen; Eva Reinmaa; Krista Fischer; Mari Nelis; Lili Milani; David Melzer; Luigi Ferrucci; Andrew Singleton; Dena Hernandez; Michael A. Nalls; Georg Homuth; Matthias Nauck
Identifying the downstream effects of disease-associated SNPs is challenging. To help overcome this problem, we performed expression quantitative trait locus (eQTL) meta-analysis in non-transformed peripheral blood samples from 5,311 individuals with replication in 2,775 individuals. We identified and replicated trans eQTLs for 233 SNPs (reflecting 103 independent loci) that were previously associated with complex traits at genome-wide significance. Some of these SNPs affect multiple genes in trans that are known to be altered in individuals with disease: rs4917014, previously associated with systemic lupus erythematosus (SLE), altered gene expression of C1QB and five type I interferon response genes, both hallmarks of SLE. DeepSAGE RNA sequencing showed that rs4917014 strongly alters the 3′ UTR levels of IKZF1 in cis, and chromatin immunoprecipitation and sequencing analysis of the trans-regulated genes implicated IKZF1 as the causal gene. Variants associated with cholesterol metabolism and type 1 diabetes showed similar phenomena, indicating that large-scale eQTL mapping provides insight into the downstream effects of many trait-associated variants.
Nature | 2007
Miguel A. Sanjuan; Christopher P. Dillon; Stephen W. G. Tait; Simon Moshiach; Frank C. Dorsey; Samuel Connell; Masaaki Komatsu; Keiji Tanaka; John L. Cleveland; Sebo Withoff; Douglas R. Green
Phagocytosis and autophagy are two ancient, highly conserved processes involved, respectively, in the removal of extracellular organisms and the destruction of organisms in the cytosol. Autophagy, for either metabolic regulation or defence, involves the formation of a double membrane called the autophagosome, which then fuses with lysosomes to degrade the contents, a process that has similarities with phagosome maturation. Toll-like-receptor (TLR) engagement activates a variety of defence mechanisms within phagocytes, including facilitation of phagosome maturation, and also engages autophagy. Therefore we speculated that TLR signalling might link these processes to enhance the function of conventional phagosomes. Here we show that a particle that engages TLRs on a murine macrophage while it is phagocytosed triggers the autophagosome marker LC3 to be rapidly recruited to the phagosome in a manner that depends on the autophagy pathway proteins ATG5 and ATG7; this process is preceded by recruitment of beclin 1 and phosphoinositide-3-OH kinase activity. Translocation of beclin 1 and LC3 to the phagosome was not associated with observable double-membrane structures characteristic of conventional autophagosomes, but was associated with phagosome fusion with lysosomes, leading to rapid acidification and enhanced killing of the ingested organism.
PLOS Genetics | 2013
Vinod Kumar; Harm-Jan Westra; Juha Karjalainen; Daria V. Zhernakova; Tonu Esko; Barbara Hrdlickova; Rodrigo Coutinho de Almeida; Alexandra Zhernakova; Eva Reinmaa; Urmo Võsa; Marten H. Hofker; Rudolf S. N. Fehrmann; Jingyuan Fu; Sebo Withoff; Andres Metspalu; Lude Franke; Cisca Wijmenga
Recently it has become clear that only a small percentage (7%) of disease-associated single nucleotide polymorphisms (SNPs) are located in protein-coding regions, while the remaining 93% are located in gene regulatory regions or in intergenic regions. Thus, the understanding of how genetic variations control the expression of non-coding RNAs (in a tissue-dependent manner) has far-reaching implications. We tested the association of SNPs with expression levels (eQTLs) of large intergenic non-coding RNAs (lincRNAs), using genome-wide gene expression and genotype data from five different tissues. We identified 112 cis-regulated lincRNAs, of which 45% could be replicated in an independent dataset. We observed that 75% of the SNPs affecting lincRNA expression (lincRNA cis-eQTLs) were specific to lincRNA alone and did not affect the expression of neighboring protein-coding genes. We show that this specific genotype-lincRNA expression correlation is tissue-dependent and that many of these lincRNA cis-eQTL SNPs are also associated with complex traits and diseases.
Seminars in Immunopathology | 2012
Vinod Kumar; Cisca Wijmenga; Sebo Withoff
Celiac disease is characterized by a chronic inflammatory reaction in the intestine and is triggered by gluten, a constituent derived from grains which is present in the common daily diet in the Western world. Despite decades of research, the mechanisms behind celiac disease etiology are still not fully understood, although it is clear that both genetic and environmental factors are involved. To improve the understanding of the disease, the genetic component has been extensively studied by genome-wide association studies. These have uncovered a wealth of information that still needs further investigation to clarify its importance. In this review, we summarize and discuss the results of the genetic studies in celiac disease, focusing on the “non-HLA” genes. We also present novel approaches to identifying the causal variants in complex susceptibility loci and disease mechanisms.
Biochimica et Biophysica Acta | 2014
Barbara Hrdlickova; Rodrigo Coutinho de Almeida; Zuzanna Borek; Sebo Withoff
It has been found that the majority of disease-associated genetic variants identified by genome-wide association studies are located outside of protein-coding regions, where they seem to affect regions that control transcription (promoters, enhancers) and non-coding RNAs that also can influence gene expression. In this review, we focus on two classes of non-coding RNAs that are currently a major focus of interest: micro-RNAs and long non-coding RNAs. We describe their biogenesis, suggested mechanism of action, and discuss how these non-coding RNAs might be affected by disease-associated genetic alterations. The discovery of these alterations has already contributed to a better understanding of the etiopathology of human diseases and yielded insight into the function of these non-coding RNAs. We also provide an overview of available databases, bioinformatics tools, and high-throughput techniques that can be used to study the mechanism of action of individual non-coding RNAs. This article is part of a Special Issue entitled: From Genome to Function.
Journal of Immunology | 2007
Alja J. Stel; Bram ten Cate; Susan Jacobs; Jan Willem Kok; Diana C. J. Spierings; Monica Dondorff; Wijnand Helfrich; Hanneke C. Kluin-Nelemans; Lou de Leij; Sebo Withoff; Bart-Jan Kroesen
Ab binding to CD20 has been shown to induce apoptosis in B cells. In this study, we demonstrate that rituximab sensitizes lymphoma B cells to Fas-induced apoptosis in a caspase-8-dependent manner. To elucidate the mechanism by which Rituximab affects Fas-mediated cell death, we investigated rituximab-induced signaling and apoptosis pathways. Rituximab-induced apoptosis involved the death receptor pathway and proceeded in a caspase-8-dependent manner. Ectopic overexpression of FLIP (the physiological inhibitor of the death receptor pathway) or application of zIETD-fmk (specific inhibitor of caspase-8, the initiator-caspase of the death receptor pathway) both specifically reduced rituximab-induced apoptosis in Ramos B cells. Blocking the death receptor ligands Fas ligand or TRAIL, using neutralizing Abs, did not inhibit apoptosis, implying that a direct death receptor/ligand interaction is not involved in CD20-mediated cell death. Instead, we hypothesized that rituximab-induced apoptosis involves membrane clustering of Fas molecules that leads to formation of the death-inducing signaling complex (DISC) and downstream activation of the death receptor pathway. Indeed, Fas coimmune precipitation experiments showed that, upon CD20-cross-linking, Fas-associated death domain protein (FADD) and caspase-8 were recruited into the DISC. Additionally, rituximab induced CD20 and Fas translocation to raft-like domains on the cell surface. Further analysis revealed that, upon stimulation with rituximab, Fas, caspase-8, and FADD were found in sucrose-gradient raft fractions together with CD20. In conclusion, in this study, we present evidence for the involvement of the death receptor pathway in rituximab-induced apoptosis of Ramos B cells with concomitant sensitization of these cells to Fas-mediated apoptosis via Fas multimerization and recruitment of caspase-8 and FADD to the DISC.
British Journal of Cancer | 1996
Sebo Withoff; Wn Keith; Aj Knol; Jc Coutts; Sf Hoare; Nanno Mulder; de Elisabeth G. E. Vries
A panel of doxorubicin-resistant sublines of the human small-cell lung carcinoma cell line GLC4 displays decreasing DNA topoisomerase II alpha (TopoII alpha) mRNA levels with increasing resistance. In the present study we describe how this decrease may be regulated. No significant differences in TopoII alpha mRNA stability or gene arrangement were found, using mRNA slot-blotting and Southern blotting, in the most resistant cell line compared with the parental cell line. To investigate if TopoII alpha gene copy loss contributed to the mRNA decrease, fluorescence in situ hybridisation using a TopoII alpha-specific probe was performed. During doxorubicin resistance development, the composition of the population in each cell line shifted with increasing resistance, from a population in which most cells contain three TopoII alpha gene copies (GLC4) to a population in which most cells contain only two copies. A partial revertant of the most resistant cell line displayed a shift back to the original situation. We conclude that the TopoII alpha gene copy number decrease per cell line is in good agreement with the decreased TopoII alpha mRNA and protein levels, and TopoII activity levels in these cell lines which were described previously.
British Journal of Cancer | 1996
Sebo Withoff; E.G.E. de Vries; W. N. Keith; Edith F. Nienhuis; W.T.A. van der Graaf; Dra Uges; Nh Mulder
Sublines of the human small-cell lung carcinoma (SCLC) cell line GLC4 with acquired resistance to teniposide, amsacrine and mitoxantrone (GLC4/VM20x, GLC4/AM3x and GLC4/MIT60x, respectively) were derived to study the contribution of DNA topoisomerase II alpha and -beta (TopoII alpha and -beta) to resistance for TopoII-targeting drugs. The cell lines did not overexpress P-glycoprotein or the multidrug resistance-associated protein but were cross-resistant to other TopoII drugs. GLC4/VM20x showed a major decrease in TopoII alpha protein (54%; for all assays presented in this paper the GLC4 level was defined to be 100%) without reduction in TopoII beta protein; GLC4/AM3x showed only a major decrease in TopoII beta protein (to 18%) and not in TopoII alpha. In GLC4/MIT60x, the TopoII alpha and -beta protein levels were both decreased (TopoII alpha to 31%; TopoII beta protein was undetectable). The decrease in TopoII alpha protein in GLC4/VM20x and GLC4/MIT60x, was mediated by decreased TopoII alpha mRNA levels. Loss of TopoII alpha gene copies contributed to the mRNA decrease in these cell lines. Only in the GLC4/MIT60x cell line was an accumulation defect observed for the drug against which the cell line was made resistant. In conclusion, TopoII alpha and -beta levels were decreased differentially in the resistant cell lines, suggesting that resistance to these drugs may be mediated by a decrease in a specific isozyme.
Nature Reviews Endocrinology | 2013
Alexandra Zhernakova; Sebo Withoff; Cisca Wijmenga
Many endocrine diseases, including type 1 diabetes mellitus, Graves disease, Addison disease and Hashimoto disease, originate as an autoimmune reaction that affects disease-specific target organs. These autoimmune diseases are characterized by the development of specific autoantibodies and by the presence of autoreactive T cells. They are caused by a complex genetic predisposition that is attributable to multiple genetic variants, each with a moderate-to-low effect size. Most of the genetic variants associated with a particular autoimmune endocrine disease are shared between other systemic and organ-specific autoimmune and inflammatory diseases, such as rheumatoid arthritis, coeliac disease, systemic lupus erythematosus and psoriasis. Here, we review the shared and specific genetic background of autoimmune diseases, summarize their treatment options and discuss how identifying the genetic and environmental factors that predispose patients to an autoimmune disease can help in the diagnosis and monitoring of patients, as well as the design of new treatments.
Genome Medicine | 2014
Barbara Hrdlickova; Vinod Kumar; Kartiek Kanduri; Daria V. Zhernakova; Subhash Tripathi; Juha Karjalainen; Riikka Lund; Yang Li; Ubaid Ullah; Rutger Modderman; Wayel H. Abdulahad; Harri Lähdesmäki; Lude Franke; Riitta Lahesmaa; Cisca Wijmenga; Sebo Withoff
BackgroundAlthough genome-wide association studies (GWAS) have identified hundreds of variants associated with a risk for autoimmune and immune-related disorders (AID), our understanding of the disease mechanisms is still limited. In particular, more than 90% of the risk variants lie in non-coding regions, and almost 10% of these map to long non-coding RNA transcripts (lncRNAs). lncRNAs are known to show more cell-type specificity than protein-coding genes.MethodsWe aimed to characterize lncRNAs and protein-coding genes located in loci associated with nine AIDs which have been well-defined by Immunochip analysis and by transcriptome analysis across seven populations of peripheral blood leukocytes (granulocytes, monocytes, natural killer (NK) cells, B cells, memory T cells, naive CD4+ and naive CD8+ T cells) and four populations of cord blood-derived T-helper cells (precursor, primary, and polarized (Th1, Th2) T-helper cells).ResultsWe show that lncRNAs mapping to loci shared between AID are significantly enriched in immune cell types compared to lncRNAs from the whole genome (α <0.005). We were not able to prioritize single cell types relevant for specific diseases, but we observed five different cell types enriched (α <0.005) in five AID (NK cells for inflammatory bowel disease, juvenile idiopathic arthritis, primary biliary cirrhosis, and psoriasis; memory T and CD8+ T cells in juvenile idiopathic arthritis, primary biliary cirrhosis, psoriasis, and rheumatoid arthritis; Th0 and Th2 cells for inflammatory bowel disease, juvenile idiopathic arthritis, primary biliary cirrhosis, psoriasis, and rheumatoid arthritis). Furthermore, we show that co-expression analyses of lncRNAs and protein-coding genes can predict the signaling pathways in which these AID-associated lncRNAs are involved.ConclusionsThe observed enrichment of lncRNA transcripts in AID loci implies lncRNAs play an important role in AID etiology and suggests that lncRNA genes should be studied in more detail to interpret GWAS findings correctly. The co-expression results strongly support a model in which the lncRNA and protein-coding genes function together in the same pathways.