Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lude Franke is active.

Publication


Featured researches published by Lude Franke.


Nature Genetics | 2013

Systematic identification of trans eQTLs as putative drivers of known disease associations

Harm-Jan Westra; Marjolein J. Peters; Tonu Esko; Hanieh Yaghootkar; Johannes Kettunen; Mark W. Christiansen; Benjamin P. Fairfax; Katharina Schramm; Joseph E. Powell; Alexandra Zhernakova; Daria V. Zhernakova; Jan H. Veldink; Leonard H. van den Berg; Juha Karjalainen; Sebo Withoff; André G. Uitterlinden; Albert Hofman; Fernando Rivadeneira; Peter A. C. 't Hoen; Eva Reinmaa; Krista Fischer; Mari Nelis; Lili Milani; David Melzer; Luigi Ferrucci; Andrew Singleton; Dena Hernandez; Michael A. Nalls; Georg Homuth; Matthias Nauck

Identifying the downstream effects of disease-associated SNPs is challenging. To help overcome this problem, we performed expression quantitative trait locus (eQTL) meta-analysis in non-transformed peripheral blood samples from 5,311 individuals with replication in 2,775 individuals. We identified and replicated trans eQTLs for 233 SNPs (reflecting 103 independent loci) that were previously associated with complex traits at genome-wide significance. Some of these SNPs affect multiple genes in trans that are known to be altered in individuals with disease: rs4917014, previously associated with systemic lupus erythematosus (SLE), altered gene expression of C1QB and five type I interferon response genes, both hallmarks of SLE. DeepSAGE RNA sequencing showed that rs4917014 strongly alters the 3′ UTR levels of IKZF1 in cis, and chromatin immunoprecipitation and sequencing analysis of the trans-regulated genes implicated IKZF1 as the causal gene. Variants associated with cholesterol metabolism and type 1 diabetes showed similar phenomena, indicating that large-scale eQTL mapping provides insight into the downstream effects of many trait-associated variants.


Nature | 2014

Genetics of rheumatoid arthritis contributes to biology and drug discovery

Yukinori Okada; Di Wu; Gosia Trynka; Towfique Raj; Chikashi Terao; Katsunori Ikari; Yuta Kochi; Koichiro Ohmura; Akari Suzuki; Shinji Yoshida; Robert R. Graham; Arun Manoharan; Ward Ortmann; Tushar Bhangale; Joshua C. Denny; Robert J. Carroll; Anne E. Eyler; Jeffrey D. Greenberg; Joel M. Kremer; Dimitrios A. Pappas; Lei Jiang; Jian Yin; Lingying Ye; Ding Feng Su; Jian Yang; Gang Xie; E. Keystone; Harm-Jan Westra; Tonu Esko; Andres Metspalu

A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA). Here we performed a genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ∼10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2, 3, 4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation, cis-acting expression quantitative trait loci and pathway analyses—as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes—to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.


Nature Communications | 2015

Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis (vol 5, 4926, 2014)

Beben Benyamin; Tonu Esko; Janina S. Ried; Aparna Radhakrishnan; Sita H. Vermeulen; Michela Traglia; Martin Goegele; Denise Anderson; Linda Broer; Clara Podmore; Jian'an Luan; Zoltán Kutalik; Serena Sanna; Peter van der Meer; Toshiko Tanaka; Fudi Wang; Harm-Jan Westra; Lude Franke; Evelin Mihailov; Lili Milani; Jonas Haelldin; Juliane Winkelmann; Thomas Meitinger; Joachim Thiery; Annette Peters; Melanie Waldenberger; Augusto Rendon; Jennifer Jolley; Jennifer Sambrook; Lambertus A. Kiemeney

Corrigendum: Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis


Nature Genetics | 2008

Newly identified genetic risk variants for celiac disease related to the immune response

Karen A. Hunt; Alexandra Zhernakova; Graham Turner; Graham A. Heap; Lude Franke; Marcel Bruinenberg; Jihane Romanos; Lotte C. Dinesen; Anthony W. Ryan; Davinder Panesar; Rhian Gwilliam; Fumihiko Takeuchi; William M. McLaren; Geoffrey Holmes; Peter D. Howdle; Julian R. Walters; David S. Sanders; Raymond J. Playford; Gosia Trynka; Chris Jj Mulder; M. Luisa Mearin; Wieke H. Verbeek; Valerie Trimble; Fiona M. Stevens; Colm O'Morain; N. P. Kennedy; Dermot Kelleher; Daniel J. Pennington; David P. Strachan; Wendy L. McArdle

Our genome-wide association study of celiac disease previously identified risk variants in the IL2–IL21 region. To identify additional risk variants, we genotyped 1,020 of the most strongly associated non-HLA markers in an additional 1,643 cases and 3,406 controls. Through joint analysis including the genome-wide association study data (767 cases, 1,422 controls), we identified seven previously unknown risk regions (P < 5 × 10−7). Six regions harbor genes controlling immune responses, including CCR3, IL12A, IL18RAP, RGS1, SH2B3 (nsSNP rs3184504) and TAGAP. Whole-blood IL18RAP mRNA expression correlated with IL18RAP genotype. Type 1 diabetes and celiac disease share HLA-DQ, IL2–IL21, CCR3 and SH2B3 risk regions. Thus, this extensive genome-wide association follow-up study has identified additional celiac disease risk variants in relevant biological pathways.


Nature Genetics | 2011

Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease.

Gosia Trynka; Karen A. Hunt; Nicholas A. Bockett; Jihane Romanos; Vanisha Mistry; Agata Szperl; Sjoerd F. Bakker; Maria Teresa Bardella; Leena Bhaw-Rosun; Gemma Castillejo; Emilio G. de la Concha; Rodrigo Coutinho de Almeida; Kerith Rae M Dias; Cleo C. van Diemen; P Dubois; Richard H. Duerr; Sarah Edkins; Lude Franke; Karin Fransen; Javier Gutierrez; Graham A. Heap; Barbara Hrdlickova; Sarah Hunt; Leticia Plaza Izurieta; Valentina Izzo; Leo A. B. Joosten; Cordelia Langford; Maria Cristina Mazzilli; Charles A. Mein; Vandana Midah

Using variants from the 1000 Genomes Project pilot European CEU dataset and data from additional resequencing studies, we densely genotyped 183 non-HLA risk loci previously associated with immune-mediated diseases in 12,041 individuals with celiac disease (cases) and 12,228 controls. We identified 13 new celiac disease risk loci reaching genome-wide significance, bringing the number of known loci (including the HLA locus) to 40. We found multiple independent association signals at over one-third of these loci, a finding that is attributable to a combination of common, low-frequency and rare genetic variants. Compared to previously available data such as those from HapMap3, our dense genotyping in a large sample collection provided a higher resolution of the pattern of linkage disequilibrium and suggested localization of many signals to finer scale regions. In particular, 29 of the 54 fine-mapped signals seemed to be localized to single genes and, in some instances, to gene regulatory elements. Altogether, we define the complex genetic architecture of the risk regions of and refine the risk signals for celiac disease, providing the next step toward uncovering the causal mechanisms of the disease.


Nature Genetics | 2015

Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations

Jimmy Z. Liu; Suzanne van Sommeren; Hailiang Huang; Siew C. Ng; Rudi Alberts; Atsushi Takahashi; Stephan Ripke; James C. Lee; Luke Jostins; Tejas Shah; Shifteh Abedian; Jae Hee Cheon; Judy H. Cho; Naser E Daryani; Lude Franke; Yuta Fuyuno; Ailsa Hart; Ramesh C. Juyal; Garima Juyal; Won Ho Kim; Andrew P. Morris; Hossein Poustchi; William G. Newman; Vandana Midha; Timothy R. Orchard; Homayon Vahedi; Ajit Sood; Joseph J.Y. Sung; Reza Malekzadeh; Harm-Jan Westra

Ulcerative colitis and Crohns disease are the two main forms of inflammatory bowel disease (IBD). Here we report the first trans-ancestry association study of IBD, with genome-wide or Immunochip genotype data from an extended cohort of 86,640 European individuals and Immunochip data from 9,846 individuals of East Asian, Indian or Iranian descent. We implicate 38 loci in IBD risk for the first time. For the majority of the IBD risk loci, the direction and magnitude of effect are consistent in European and non-European cohorts. Nevertheless, we observe genetic heterogeneity between divergent populations at several established risk loci driven by differences in allele frequency (NOD2) or effect size (TNFSF15 and ATG16L1) or a combination of these factors (IL23R and IRGM). Our results provide biological insights into the pathogenesis of IBD and demonstrate the usefulness of trans-ancestry association studies for mapping loci associated with complex diseases and understanding genetic architecture across diverse populations.


American Journal of Human Genetics | 2006

Reconstruction of a Functional Human Gene Network, with an Application for Prioritizing Positional Candidate Genes

Lude Franke; Harm van Bakel; Like Fokkens; Edwin D. de Jong; Michael Egmont-Petersen; Cisca Wijmenga

Most common genetic disorders have a complex inheritance and may result from variants in many genes, each contributing only weak effects to the disease. Pinpointing these disease genes within the myriad of susceptibility loci identified in linkage studies is difficult because these loci may contain hundreds of genes. However, in any disorder, most of the disease genes will be involved in only a few different molecular pathways. If we know something about the relationships between the genes, we can assess whether some genes (which may reside in different loci) functionally interact with each other, indicating a joint basis for the disease etiology. There are various repositories of information on pathway relationships. To consolidate this information, we developed a functional human gene network that integrates information on genes and the functional relationships between genes, based on data from the Kyoto Encyclopedia of Genes and Genomes, the Biomolecular Interaction Network Database, Reactome, the Human Protein Reference Database, the Gene Ontology database, predicted protein-protein interactions, human yeast two-hybrid interactions, and microarray co-expressions. We applied this network to interrelate positional candidate genes from different disease loci and then tested 96 heritable disorders for which the Online Mendelian Inheritance in Man database reported at least three disease genes. Artificial susceptibility loci, each containing 100 genes, were constructed around each disease gene, and we used the network to rank these genes on the basis of their functional interactions. By following up the top five genes per artificial locus, we were able to detect at least one known disease gene in 54% of the loci studied, representing a 2.8-fold increase over random selection. This suggests that our method can significantly reduce the cost and effort of pinpointing true disease genes in analyses of disorders for which numerous loci have been reported but for which most of the genes are unknown.


Nature Genetics | 2012

High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis

Steve Eyre; John Bowes; Dorothée Diogo; Annette Lee; Anne Barton; Paul Martin; Alexandra Zhernakova; Eli A. Stahl; Sebastien Viatte; Kate McAllister; Christopher I. Amos; Leonid Padyukov; René E. M. Toes; Tom W J Huizinga; Cisca Wijmenga; Gosia Trynka; Lude Franke; Harm-Jan Westra; Lars Alfredsson; Xinli Hu; Cynthia Sandor; Paul I. W. de Bakker; Sonia Davila; Chiea Chuen Khor; Khai Koon Heng; Robert Andrews; Sarah Edkins; Sarah Hunt; Cordelia Langford; Deborah Symmons

Using the Immunochip custom SNP array, which was designed for dense genotyping of 186 loci identified through genome-wide association studies (GWAS), we analyzed 11,475 individuals with rheumatoid arthritis (cases) of European ancestry and 15,870 controls for 129,464 markers. We combined these data in a meta-analysis with GWAS data from additional independent cases (n = 2,363) and controls (n = 17,872). We identified 14 new susceptibility loci, 9 of which were associated with rheumatoid arthritis overall and five of which were specifically associated with disease that was positive for anticitrullinated peptide antibodies, bringing the number of confirmed rheumatoid arthritis risk loci in individuals of European ancestry to 46. We refined the peak of association to a single gene for 19 loci, identified secondary independent effects at 6 loci and identified association to low-frequency variants at 4 loci. Bioinformatic analyses generated strong hypotheses for the causal SNP at seven loci. This study illustrates the advantages of dense SNP mapping analysis to inform subsequent functional investigations.


Molecular Psychiatry | 2006

Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism

Jas Vorstman; Wouter G. Staal; E van Daalen; H. van Engeland; P F R Hochstenbach; Lude Franke

The identification of the candidate genes for autism through linkage and association studies has proven to be a difficult enterprise. An alternative approach is the analysis of cytogenetic abnormalities associated with autism. We present a review of all studies to date that relate patients with cytogenetic abnormalities to the autism phenotype. A literature survey of the Medline and Pubmed databases was performed, using multiple keyword searches. Additional searches through cited references and abstracts from the major genetic conferences from 2000 onwards completed the search. The quality of the phenotype (i.e. of the autism spectrum diagnosis) was rated for each included case. Available specific probe and marker information was used to define optimally the boundaries of the cytogenetic abnormalities. In case of recurrent deletions or duplications on chromosome 15 and 22, the positions of the low copy repeats that are thought to mediate these rearrangements were used to define the most likely boundaries of the implicated ‘Cytogenetic Regions Of Interest’ (CROIs). If no molecular data were available, the sequence position of the relevant chromosome bands was used to obtain the approximate molecular boundaries of the CROI. The findings of the current review indicate: (1) several regions of overlap between CROIs and known loci of significant linkage and/or association findings, and (2) additional regions of overlap among multiple CROIs at the same locus. Whereas the first finding confirms previous linkage/association findings, the latter may represent novel, not previously identified regions containing genes that contribute to autism. This analysis not only has confirmed the presence of several known autism risk regions but has also revealed additional previously unidentified loci, including 2q37, 5p15, 11q25, 16q22.3, 17p11.2, 18q21.1, 18q23, 22q11.2, 22q13.3 and Xp22.2–p22.3.


Science | 2016

Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity.

Alexandra Zhernakova; Alexander Kurilshikov; Marc Jan Bonder; Ettje F. Tigchelaar; Melanie Schirmer; Tommi Vatanen; Zlatan Mujagic; Arnau Vich Vila; Gwen Falony; Sara Vieira-Silva; Jun Wang; Floris Imhann; Eelke Brandsma; Soesma A. Jankipersadsing; Marie Joossens; Maria Carmen Cenit; Patrick Deelen; Morris A. Swertz; Rinse K. Weersma; Edith J. M. Feskens; Mihai G. Netea; Dirk Gevers; Daisy Jonkers; Lude Franke; Yurii S. Aulchenko; Curtis Huttenhower; Jeroen Raes; Marten H. Hofker; Ramnik J. Xavier; Cisca Wijmenga

“Normal” for the gut microbiota For the benefit of future clinical studies, it is critical to establish what constitutes a “normal” gut microbiome, if it exists at all. Through fecal samples and questionnaires, Falony et al. and Zhernakova et al. targeted general populations in Belgium and the Netherlands, respectively. Gut microbiota composition correlated with a range of factors including diet, use of medication, red blood cell counts, fecal chromogranin A, and stool consistency. The data give some hints for possible biomarkers of normal gut communities. Science, this issue pp. 560 and 565 Two large-scale studies in Western Europe establish environment-diet-microbe-host interactions. Deep sequencing of the gut microbiomes of 1135 participants from a Dutch population-based cohort shows relations between the microbiome and 126 exogenous and intrinsic host factors, including 31 intrinsic factors, 12 diseases, 19 drug groups, 4 smoking categories, and 60 dietary factors. These factors collectively explain 18.7% of the variation seen in the interindividual distance of microbial composition. We could associate 110 factors to 125 species and observed that fecal chromogranin A (CgA), a protein secreted by enteroendocrine cells, was exclusively associated with 61 microbial species whose abundance collectively accounted for 53% of microbial composition. Low CgA concentrations were seen in individuals with a more diverse microbiome. These results are an important step toward a better understanding of environment-diet-microbe-host interactions.

Collaboration


Dive into the Lude Franke's collaboration.

Top Co-Authors

Avatar

Cisca Wijmenga

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandra Zhernakova

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Jan Bonder

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Morris A. Swertz

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Daria V. Zhernakova

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gosia Trynka

University of Groningen

View shared research outputs
Researchain Logo
Decentralizing Knowledge