Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seiji Takeda is active.

Publication


Featured researches published by Seiji Takeda.


Science | 2008

Local Positive Feedback Regulation Determines Cell Shape in Root Hair Cells

Seiji Takeda; Catherine Gapper; Hidetaka Kaya; Elizabeth Bell; Kazuyuki Kuchitsu; Liam Dolan

The specification and maintenance of growth sites are tightly regulated during cell morphogenesis in all organisms. ROOT HAIR DEFECTIVE 2 reduced nicotinamide adenine dinucleotide phosphate (RHD2 NADPH) oxidase–derived reactive oxygen species (ROS) stimulate a Ca2+ influx into the cytoplasm that is required for root hair growth in Arabidopsis thaliana. We found that Ca2+, in turn, activated the RHD2 NADPH oxidase to produce ROS at the growing point in the root hair. Together, these components could establish a means of positive feedback regulation that maintains an active growth site in expanding root hair cells. Because the location and stability of growth sites predict the ultimate form of a plant cell, our findings demonstrate how a positive feedback mechanism involving RHD2, ROS, and Ca2+ can determine cell shape.


Nature | 2005

A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells

Rachel J. Carol; Seiji Takeda; Paul Linstead; Marcus C. Durrant; Hana Kakesova; Paul Derbyshire; Sinéad Drea; Viktor Zarsky; Liam Dolan

Root hairs are cellular protuberances extending from the root surface into the soil; there they provide access to immobile inorganic ions such as phosphate, which are essential for growth. Their cylindrical shape results from a polarized mechanism of cell expansion called tip growth in which elongation is restricted to a small area at the surface of the hair-forming cell (trichoblast) tip. Here we identify proteins that spatially control the sites at which cell growth occurs by isolating Arabidopsis mutants (scn1) that develop ectopic sites of growth on trichoblasts. We cloned SCN1 and showed that SCN1 is a RhoGTPase GDP dissociation inhibitor (RhoGDI) that spatially restricts the sites of growth to a single point on the trichoblast. We showed previously that localized production of reactive oxygen species by RHD2/AtrbohC NADPH oxidase is required for hair growth; here we show that SCN1/AtrhoGDI1 is a component of the mechanism that focuses RHD2/AtrbohC-catalysed production of reactive oxygen species to hair tips during wild-type development. We propose that the spatial organization of growth in plant cells requires the local RhoGDI-regulated activation of the RHD2/AtrbohC NADPH oxidase.


Development | 2003

RABBIT EARS, encoding a SUPERMAN-like zinc finger protein,regulates petal development in Arabidopsis thaliana

Seiji Takeda; Noritaka Matsumoto; Kiyotaka Okada

Floral organs usually initiate at fixed positions in concentric whorls within a flower. Although it is understood that floral homeotic genes determine the identity of floral organs, the mechanisms of position determination and the development of each organ have not been clearly explained. We isolated a novel mutant, rabbit ears (rbe), with defects in petal development. In rbe, under-developed petals are formed at the correct position in a flower, and the initiation of petal primordia is altered. The rbe mutation affects the second whorl organ shapes independently of the organ identity. RBE encodes a SUPERMAN-like protein and is located in the nucleus, and thus may be a transcription factor. RBE transcripts are expressed in petal primordia and their precursor cells, and disappeared at later stages. When cells that express RBE are ablated genetically, no petal primordia arise. RBE is not expressed in ap1-1 and ptl-1 mutants, indicating that RBE acts downstream of AP1 and PTL genes. These characteristics suggest that RBE is required for the early development of the organ primordia of the second whorl.


The Plant Cell | 2014

Ca2+-Activated Reactive Oxygen Species Production by Arabidopsis RbohH and RbohJ Is Essential for Proper Pollen Tube Tip Growth

Hidetaka Kaya; Ryo Nakajima; Megumi Iwano; Masahiro M. Kanaoka; Sachie Kimura; Seiji Takeda; Tomoko Kawarazaki; Eriko Senzaki; Yuki Hamamura; Tetsuya Higashiyama; Seiji Takayama; Mitsutomo Abe; Kazuyuki Kuchitsu

Arabidopsis RbohH and RbohJ, NADPH oxidases expressed in pollen tubes, are activated by Ca2+ via their EF-hand motifs to produce reactive oxygen species (ROS) that are essential for proper pollen tube tip growth in vivo. Positive feedback regulation involving Ca2+ and ROS production mediated by RbohH and RbohJ is proposed to shape the long tubular structure of the pollen tube. In flowering plants, pollen germinates on the stigma and pollen tubes grow through the style to fertilize the ovules. Enzymatic production of reactive oxygen species (ROS) has been suggested to be involved in pollen tube tip growth. Here, we characterized the function and regulation of the NADPH oxidases RbohH and RbohJ (Respiratory burst oxidase homolog H and J) in pollen tubes in Arabidopsis thaliana. In the rbohH and rbohJ single mutants, pollen tube tip growth was comparable to that of the wild type; however, tip growth was severely impaired in the double mutant. In vivo imaging showed that ROS accumulation in the pollen tube was impaired in the double mutant. Both RbohH and RbohJ, which contain Ca2+ binding EF-hand motifs, possessed Ca2+-induced ROS-producing activity and localized at the plasma membrane of the pollen tube tip. Point mutations in the EF-hand motifs impaired Ca2+-induced ROS production and complementation of the double mutant phenotype. We also showed that a protein phosphatase inhibitor enhanced the Ca2+-induced ROS-producing activity of RbohH and RbohJ, suggesting their synergistic activation by protein phosphorylation and Ca2+. Our results suggest that ROS production by RbohH and RbohJ is essential for proper pollen tube tip growth, and furthermore, that Ca2+-induced ROS positive feedback regulation is conserved in the polarized cell growth to shape the long tubular cell.


The Plant Cell | 2008

NAC Family Proteins NARS1/NAC2 and NARS2/NAM in the Outer Integument Regulate Embryogenesis in Arabidopsis

Tadashi Kunieda; Nobutaka Mitsuda; Masaru Ohme-Takagi; Seiji Takeda; Mitsuhiro Aida; Masao Tasaka; Maki Kondo; Mikio Nishimura; Ikuko Hara-Nishimura

Seed morphogenesis consists of embryogenesis and the development of maternal tissues such as the inner and outer integuments, both of which give rise to seed coats. We show that expression of chimeric repressors derived from NAC-REGULATED SEED MORPHOLOGY1 and -2 (NARS1 and NARS2, also known as NAC2 and NAM, respectively) caused aberrant seed shapes in Arabidopsis thaliana. Double knockout mutant nars1 nars2 exhibited abnormally shaped seeds; moreover, neither nars1 nor nars2 produced abnormal seeds, indicating that NARS1 and NARS2 redundantly regulate seed morphogenesis. Degeneration of the integuments in nars1 nars2 was markedly delayed, while that of the wild type occurred around the torpedo-shaped embryo stage. Additionally, nars1 nars2 showed a defect in embryogenesis: some nars1 nars2 embryos were developmentally arrested at the torpedo-shaped embryo stage. Unexpectedly, however, neither NARS1 nor NARS2 was expressed in the embryo at this stage, although they were found to be expressed in the outer integument. Wild-type pistils pollinated with nars1 nars2 pollen generated normal seeds, while the reverse crossing generated abnormal seeds. Taken together, these results indicate that NARS1 and NARS2 regulate embryogenesis by regulating the development and degeneration of ovule integuments. Our findings suggest that there is an intertissue communication between the embryo and the maternal integument.


Plant Journal | 2011

CUP-SHAPED COTYLEDON1 transcription factor activates the expression of LSH4 and LSH3, two members of the ALOG gene family, in shoot organ boundary cells

Seiji Takeda; Keiko Hanano; Ayano Kariya; Satoko Shimizu; Li Zhao; Minami Matsui; Masao Tasaka; Mitsuhiro Aida

The establishment of organ boundaries is a fundamental process for proper morphogenesis in multicellular organisms. In plants, the shoot meristem repetitively forms organ primordia from its periphery, and boundary cells are generated between them to separate their cellular fates. The genes CUP-SHAPED COTYLEDON1 (CUC1) and CUC2, which encode plant-specific NAC transcription factors, play central roles in establishment of the shoot organ boundaries in Arabidopsis thaliana. Here we show that CUC1 protein activates expression of LIGHT-DEPENDENT SHORT HYPOCOTYLS 4 (LSH4) and its homolog LSH3 in shoot organ boundary cells. Both genes encode nuclear proteins of the Arabidopsis LSH1 and Oryza G1 (ALOG) family, the members of which are widely conserved in land plants. Expression of LSH4 and LSH3 is detected in the boundary cells of various shoot organs, such as cotyledons, leaves and floral organs, and requires the activity of CUC1 and CUC2. Experiments using the glucocorticoid receptor system indicate that transcription of LSH4 and LSH3 is directly up-regulated by CUC1. Constitutive expression of LSH4 in the shoot apex causes inhibition of leaf growth in the vegetative phase, and formation of extra shoots or shoot organs within a flower in the reproductive phase. Together, our results indicate that CUC1 directly activates transcription of the nuclear factor genes LSH4 and LSH3, which may suppress organ differentiation in the boundary region.


eLife | 2015

Mechanical stress contributes to the expression of the STM homeobox gene in Arabidopsis shoot meristems

Benoit Landrein; Annamaria Kiss; Massimiliano Sassi; Aurélie Chauvet; Pradeep Das; Millán Cortizo; Patrick Laufs; Seiji Takeda; Mitsuhiro Aida; Jan Traas; Teva Vernoux; Arezki Boudaoud; Olivier Hamant

The role of mechanical signals in cell identity determination remains poorly explored in tissues. Furthermore, because mechanical stress is widespread, mechanical signals are difficult to uncouple from biochemical-based transduction pathways. Here we focus on the homeobox gene SHOOT MERISTEMLESS (STM), a master regulator and marker of meristematic identity in Arabidopsis. We found that STM expression is quantitatively correlated to curvature in the saddle-shaped boundary domain of the shoot apical meristem. As tissue folding reflects the presence of mechanical stress, we test and demonstrate that STM expression is induced after micromechanical perturbations. We also show that STM expression in the boundary domain is required for organ separation. While STM expression correlates with auxin depletion in this domain, auxin distribution and STM expression can also be uncoupled. STM expression and boundary identity are thus strengthened through a synergy between auxin depletion and an auxin-independent mechanotransduction pathway at the shoot apical meristem. DOI: http://dx.doi.org/10.7554/eLife.07811.001


BMC Plant Biology | 2014

Transcriptional profiling of Arabidopsis root hairs and pollen defines an apical cell growth signature.

Jörg D. Becker; Seiji Takeda; Filipe Borges; Liam Dolan; José A. Feijó

BackgroundCurrent views on the control of cell development are anchored on the notion that phenotypes are defined by networks of transcriptional activity. The large amounts of information brought about by transcriptomics should allow the definition of these networks through the analysis of cell-specific transcriptional signatures. Here we test this principle by applying an analogue to comparative anatomy at the cellular level, searching for conserved transcriptional signatures, or conserved small gene-regulatory networks (GRNs) on root hairs (RH) and pollen tubes (PT), two filamentous apical growing cells that are a striking example of conservation of structure and function in plants.ResultsWe developed a new method for isolation of growing and mature root hair cells, analysed their transcriptome by microarray analysis, and further compared it with pollen and other single cell transcriptomics data. Principal component analysis shows a statistical relation between the datasets of RHs and PTs which is suggestive of a common transcriptional profile pattern for the apical growing cells in a plant, with overlapping profiles and clear similarities at the level of small GTPases, vesicle-mediated transport and various specific metabolic responses. Furthermore, cis-regulatory element analysis of co-regulated genes between RHs and PTs revealed conserved binding sequences that are likely required for the expression of genes comprising the apical signature. This included a significant occurrence of motifs associated to a defined transcriptional response upon anaerobiosis.ConclusionsOur results suggest that maintaining apical growth mechanisms synchronized with energy yielding might require a combinatorial network of transcriptional regulation. We propose that this study should constitute the foundation for further genetic and physiological dissection of the mechanisms underlying apical growth of plant cells.


Planta | 2008

NADPH oxidase involvement in cellular integrity.

Neil Macpherson; Seiji Takeda; Zhonglin Shang; Adeeba Dark; Jennifer C. Mortimer; Colin Brownlee; Liam Dolan; Julia M. Davies

NADPH oxidase activity is involved in plant adaptation and development. The reactive oxygen species sourced by NADPH oxidase activity may contribute to wall strength and protoplast volume adjustment. Root hair bulge apices of the NADPH oxidase mutant rhd2/Atrbohc were more robust than the kjk cellulose synthase mutant, but burst more readily than the wild type (WT). Root epidermal wall appeared impaired in rhd2/Atrbohc, as revealed by the number of protoplasts released by wall-degrading enzymes. Root hair bulges of rhd2/Atrbohc burst more than the WT when challenged in situ with hypo-osmotic low ionic strength medium. Inhibition of NADPH oxidase activity with diphenylene iodonium caused WT to phenocopy the rhd2/Atrbohc bursting in response to hypo-osmotic shock. This implicates RHD2/AtRBOHC in softening the cell wall to permit protoplast expansion. Overall, the results point to a role for RHD2/AtRBOHC in contributing to wall strength.


Plant Journal | 2015

A conserved role for CUP-SHAPED COTYLEDON genes during ovule development.

Beatriz Gonçalves; Alice Hasson; Katia Belcram; Millán Cortizo; Halima Morin; Krisztina Nikovics; Aurélie Vialette-Guiraud; Seiji Takeda; Mitsuhiro Aida; Patrick Laufs; Nicolas Arnaud

The evolution of plant reproductive strategies has led to a remarkable diversity of structures, especially within the flower, a structure characteristic of the angiosperms. In flowering plants, sexual reproduction depends notably on the development of the gynoecium that produces and protects the ovules. In Arabidopsis thaliana, ovule initiation is promoted by the concerted action of auxin with CUC1 (CUP-SHAPED COTYLEDON1) and CUC2, two genes that encode transcription factors of the NAC family (NAM/ATAF1,2/CUC). Here we highlight an additional role for CUC2 and CUC3 in Arabidopsis thaliana ovule separation. While CUC1 and CUC2 are broadly expressed in the medial tissue of the gynoecium, CUC2 and CUC3 are expressed in the placental tissue between developing ovules. Consistent with the partial overlap between CUC1, CUC2 and CUC3 expression patterns, we show that CUC proteins can physically interact, both in yeast cells and in planta. We found that the cuc2;cuc3 double mutant specifically harbours defects in ovule separation, producing fused seeds that share the seed coat, and suggesting that CUC2 and CUC3 promote ovule separation in a partially redundant manner. Functional analyses show that CUC transcription factors are also involved in ovule development in Cardamine hirsuta. Additionally we show a conserved expression pattern of CUC orthologues between ovule primordia in other phylogenetically distant species with different gynoecium architectures. Taken together these results suggest an ancient role for CUC transcription factors in ovule separation, and shed light on the conservation of mechanisms involved in the development of innovative structures.

Collaboration


Dive into the Seiji Takeda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mitsuhiro Aida

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuyuki Kuchitsu

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masao Tasaka

Nara Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge