Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seiji Tsuge is active.

Publication


Featured researches published by Seiji Tsuge.


BMC Genomics | 2008

Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A

Daniel D. Sommer; Michael C. Schatz; Adam M. Phillippy; Pablo D. Rabinowicz; Seiji Tsuge; Ayako Furutani; Hirokazu Ochiai; Arthur L. Delcher; David R. Kelley; Ramana Madupu; Daniela Puiu; Diana Radune; Martin Shumway; Cole Trapnell; Gudlur Aparna; Gopaljee Jha; Alok K. Pandey; Prabhu B. Patil; Hiromichi Ishihara; Damien Meyer; Boris Szurek; Valérie Verdier; Ralf Koebnik; J. Maxwell Dow; Robert P. Ryan; Hisae Hirata; Shinji Tsuyumu; Sang Won Lee; Pamela C. Ronald; Ramesh V. Sonti

Xanthomonas oryzae pv. oryzae causes bacterial blight of rice (Oryza sativa L.), a major disease that constrains production of this staple crop in many parts of the world. We report here on the complete genome sequence of strain PXO99A and its comparison to two previously sequenced strains, KACC10331 and MAFF311018, which are highly similar to one another. The PXO99A genome is a single circular chromosome of 5,240,075 bp, considerably longer than the genomes of the other strains (4,941,439 bp and 4,940,217 bp, respectively), and it contains 5083 protein-coding genes, including 87 not found in KACC10331 or MAFF311018. PXO99A contains a greater number of virulence-associated transcription activator-like effector genes and has at least ten major chromosomal rearrangements relative to KACC10331 and MAFF311018. PXO99A contains numerous copies of diverse insertion sequence elements, members of which are associated with 7 out of 10 of the major rearrangements. A rapidly-evolving CRISPR (clustered regularly interspersed short palindromic repeats) region contains evidence of dozens of phage infections unique to the PXO99A lineage. PXO99A also contains a unique, near-perfect tandem repeat of 212 kilobases close to the replication terminus. Our results provide striking evidence of genome plasticity and rapid evolution within Xanthomonas oryzae pv. oryzae. The comparisons point to sources of genomic variation and candidates for strain-specific adaptations of this pathogen that help to explain the extraordinary diversity of Xanthomonas oryzae pv. oryzae genotypes and races that have been isolated from around the world.


Journal of Bacteriology | 2011

Two New Complete Genome Sequences Offer Insight into Host and Tissue Specificity of Plant Pathogenic Xanthomonas spp.

Adam J. Bogdanove; Ralf Koebnik; Hong Lu; Ayako Furutani; Samuel V. Angiuoli; Prabhu B. Patil; Marie-Anne Van Sluys; Robert P. Ryan; Damien Meyer; Sang-Wook Han; Gudlur Aparna; Misha Rajaram; Arthur L. Delcher; Adam M. Phillippy; Daniela Puiu; Michael C. Schatz; Martin Shumway; Daniel D. Sommer; Cole Trapnell; Faiza Benahmed; George Dimitrov; Ramana Madupu; Diana Radune; Steven A. Sullivan; Gopaljee Jha; Hiromichi Ishihara; Sang Won Lee; Alok K. Pandey; Vikas Sharma; Malinee Sriariyanun

Xanthomonas is a large genus of bacteria that collectively cause disease on more than 300 plant species. The broad host range of the genus contrasts with stringent host and tissue specificity for individual species and pathovars. Whole-genome sequences of Xanthomonas campestris pv. raphani strain 756C and X. oryzae pv. oryzicola strain BLS256, pathogens that infect the mesophyll tissue of the leading models for plant biology, Arabidopsis thaliana and rice, respectively, were determined and provided insight into the genetic determinants of host and tissue specificity. Comparisons were made with genomes of closely related strains that infect the vascular tissue of the same hosts and across a larger collection of complete Xanthomonas genomes. The results suggest a model in which complex sets of adaptations at the level of gene content account for host specificity and subtler adaptations at the level of amino acid or noncoding regulatory nucleotide sequence determine tissue specificity.


Molecular Plant-microbe Interactions | 2009

Identification of Novel Type III Secretion Effectors in Xanthomonas oryzae pv. oryzae

Ayako Furutani; Minako Takaoka; Harumi Sanada; Yukari Noguchi; Takashi Oku; Kazunori Tsuno; Hirokazu Ochiai; Seiji Tsuge

Many gram-negative bacteria secrete so-called effector proteins via a type III secretion (T3S) system. Through genome screening for genes encoding potential T3S effectors, 60 candidates were selected from rice pathogen Xanthomonas oryzae pv. oryzae MAFF311018 using these criteria: i) homologs of known T3S effectors in plant-pathogenic bacteria, ii) genes with expression regulated by hrp regulatory protein HrpX, or iii) proteins with N-terminal amino acid patterns associated with T3S substrates of Pseudomonas syringae. Of effector candidates tested with the Bordetella pertussis calmodulin-dependent adenylate cyclase reporter for translocation into plant cells, 16 proteins were translocated in a T3S system-dependent manner. Of these 16 proteins, nine were homologs of known effectors in other plant-pathogenic bacteria and seven were not. Most of the effectors were widely conserved in Xanthomonas spp.; however, some were specific to X. oryzae. Interestingly, all these effectors were expressed in an HrpX-dependent manner, suggesting coregulation of effectors and the T3S system. In X. campestris pv. vesicatoria, HpaB and HpaC (HpaP in X. oryzae pv. oryzae) have a central role in recruiting T3S substrates to the secretion apparatus. Secretion of all but one effector was reduced in both HpaB() and HpaP() mutant strains, indicating that HpaB and HpaP are widely involved in efficient secretion of the effectors.


Journal of General Plant Pathology | 2003

Agrobacterium tumefaciens-mediated transformation for random insertional mutagenesis in Colletotrichum lagenarium

Gento Tsuji; Satoshi Fujii; Naoki Fujihara; Chika Hirose; Seiji Tsuge; Tomonori Shiraishi; Yasuyuki Kubo

Random insertional mutagenesis using a marker DNA fragment is an effective method for identifying fungal genes relevant to morphogenesis, metabolism, and so on. Agrobacterium tumefaciens-mediated transformation (AtMT) has long been used as a tool for the genetic modification of a wide range of plant species. Recent study has indicated that A. tumefaciens could transfer T-DNA not only to plant cells but also to fungal cells. In this study, AtMT was applied to Colletotrichum lagenarium for random insertional mutagenesis. We constructed a binary vector pBIG2RHPH2 carrying a hygromycin-resistant gene cassette between the right and left borders of T-DNA. Optimal co-cultivation of C. lagenarium wild-type 104-T with pBIG2RHPH2-introduced A. tumefaciens C58C1 led to the production of 150–300 hygromycin-resistant transformants per 106 conidia. Southern blot analysis revealed that T-DNA was mainly integrated at a single site in the genome and at different sites in transformants. The T-DNA inserts showed small truncations of either end, but the hygromycin-resistant gene cassette inside the T-DNA was generally intact. The mode of T-DNA insertion described above resulted in highly efficient gene recovery from the transformants by thermal asymmetrical interlaced-polymerase chain reaction. The fungal genomic DNA segments flanking T-DNA were identified from five of eight mutants that had defective melanin biosynthesis. The sequence from one of the segments was identical to that of the melanin biosynthesis gene PKS1 of C. lagenarium, which we previously characterized. These results strongly support our notion that AtMT is a possible tool for tagging genes relevant to pathogenicity in the plant pathogenic fungus C. lagenarium.


Molecular Plant-microbe Interactions | 2003

The Colletotrichum lagenarium Ste12-Like Gene CST1 Is Essential for Appressorium Penetration

Gento Tsuji; Satoshi Fujii; Seiji Tsuge; Tomonori Shiraishi; Yasuyuki Kubo

Colletotrichum lagenarium is the causal agent of anthracnose of cucumber. This fungus produces a darkly melanized infection structure, appressoria, to penetrate the host leaves. The C. lagenarium CMK1 gene, a homologue of the Saccharomyces cerevisiae FUS3/KSS1 mitogen-activated protein (MAP) kinase genes, was shown to regulate conidial germination, appressorium formation, and invasive growth. In S. cerevisiae, Ste12p is known to be a transcriptional factor downstream of Fus3p/Kss1p MAP kinases. To evaluate the CMK1 MAP kinase pathway, we isolated the Ste12 homologue CST1 gene from C. lagenarium and characterized. The cst1delta strains were nonpathogenic on intact host leaves, but could form lesions when inoculated on wounded leaves. Conidia of the cst1delta strains could germinate and form melanized appressoria on both host leaf surface and artificial cellulose membrane, but could not produce infectious hyphae from appressoria, suggesting that CST1 is essential for appressorium penetration in C. lagenarium. In addition, matured appressoria of the cst1delta strains contained an extremely low level of lipid droplets compared with that of the wild-type strain. Lipid droplets were abundant in conidia of the cst1delta strains, but rapidly disappeared during appressorium formation. This misscheduled lipid degradation might be related to the failure of appressorium penetration in the cst1delta strain.


Journal of General Plant Pathology | 2002

Expression of Xanthomonas oryzae pv. oryzae hrp Genes in XOM2, a Novel Synthetic Medium

Seiji Tsuge; Ayako Furutani; Rie Fukunaka; Takashi Oku; Kazunori Tsuno; Hirokazu Ochiai; Yasuhiro Inoue; Hisatoshi Kaku; Yasuyuki Kubo

To analyze the regulation of hrp expression and to detect and identify hrp-dependent secretion proteins of plant-pathogenic bacteria, an appropriate hrp-inducing medium is indispensable. In this study, two efficient hrp-inducing media for Xanthomonas oryzae pv. oryzae were designed by assaying the expression of a hrcU (the first gene of the hrpC operon) and a gus (β-glucuronidase) fusion gene. We modified XVM2, which is a hrp-inducing medium for X. campestris pv. vesicatoria, by adding 0.01% xylose in place of fructose and sucrose (0.18 and 0.34%, respectively) as a sugar source. The resulting medium induced approximately 15-fold more GUS activity from transformants containing a hrcU::gus gene than did XVM2. Moreover, a methionine-containing synthetic medium with 0.18% xylose as a sugar source was able to induce much stronger expression of HrcU::GUS, with GUS activity approximately 100-fold greater than that in XVM2. Induction depended on a regulator, HrpXo, and the PIP (plant-inducible-promoter) box, suggesting that HrcU::GUS was expressed in a hrp-dependent manner. The induction of operons hrpA to hrpF in XOM2 was also confirmed. These results suggest that both media, especially XOM2, are highly efficient hrp-inducing media for X. oryzae pv. oryzae.


Journal of Bacteriology | 2004

Evidence for HrpXo-Dependent Expression of Type II Secretory Proteins in Xanthomonas oryzae pv. oryzae

Ayako Furutani; Seiji Tsuge; Kouhei Ohnishi; Yasufumi Hikichi; Takashi Oku; Kazunori Tsuno; Yasuhiro Inoue; Hirokazu Ochiai; Hisatoshi Kaku; Yasuyuki Kubo

Xanthomonas oryzae pv. oryzae is a causal agent of bacterial leaf blight of rice. Recently, an efficient hrp-inducing medium, XOM2, was established for this bacterium. In this medium, more than 10 proteins were secreted from the wild-type strain of X. oryzae pv. oryzae. Many of these proteins disappeared or decreased in amount in culture on XOM2 when incubated with the strain that has a mutation in the hrp regulatory gene. Interestingly, the secretory protein profile of a mutant lacking a type III secretion system (TTSS), components of which are encoded by hrp genes, was similar to that of the wild-type strain except that a few proteins had disappeared. This finding suggests that many HrpXo-dependent secretory proteins are secreted via systems other than the TTSS. By isolating mutant strains lacking a type II secretion system, we examined this hypothesis. As expected, many of the HrpXo-dependent secretory proteins disappeared or decreased when the mutant was cultured in XOM2. By determining the N-terminal amino acid sequence, we identified one of the type II secretory proteins as a cysteine protease homolog, CysP2. Nucleotide sequence analysis revealed that cysP2 has an imperfect plant-inducible-promoter box, a consensus sequence which HrpXo regulons possess in the promoter region, and a deduced signal peptide sequence at the N terminus. By reverse transcription-PCR analysis and examination of the expression of CysP2 by using a plasmid harboring a cysP2::gus fusion gene, HrpXo-dependent expression of CysP2 was confirmed. Here, we reveal that the hrp regulatory gene hrpXo is also involved in the expression of not only hrp genes and type III secretory proteins but also some type II secretory proteins.


Journal of Bacteriology | 2005

Effects on promoter activity of base substitutions in the cis-acting regulatory element of HrpXo regulons in Xanthomonas oryzae pv. oryzae

Seiji Tsuge; Shinsaku Terashima; Ayako Furutani; Hirokazu Ochiai; Takashi Oku; Kazunori Tsuno; Hisatoshi Kaku; Yasuyuki Kubo

In Xanthomonas oryzae pv. oryzae, the causal agent of bacterial leaf blight of rice, HrpXo is known to be a transcriptional regulator for the hypersensitive response and pathogenicity (hrp) genes. Several HrpXo regulons are preceded by a consensus sequence (TTCGC-N(15)-TTCGC), called the plant-inducible promoter (PIP) box, which is required for expression of the gene that follows. Thus, the PIP box can be an effective marker for screening HrpXo regulons from the genome database. It is not known, however, whether mutations in the PIP box cause a complete loss of promoter activity. In this study, we introduced base substitutions at each of the consensus nucleotides in the PIP box of the hrpC operon in X. oryzae pv. oryzae, and the promoter activity was examined by using a beta-glucuronidase (GUS) reporter gene. Although the GUS activity was generally reduced by base substitutions, several mutated PIP boxes conferred considerable promoter activity. In several cases, even imperfect PIP boxes with two base substitutions retained 20% of the promoter activity found in the nonsubstituted PIP box. We screened HrpXo regulon candidates with an imperfect PIP box obtained from the genome database of X. oryzae pv. oryzae and found that at least two genes preceded by an imperfect PIP box with two base substitutions were actually expressed in an HrpXo-dependent manner. These results indicate that a base substitution in the PIP box is quite permissible for HrpXo-dependent expression and suggest that X. oryzae pv. oryzae may possess more HrpXo regulons than expected.


Journal of Bacteriology | 2006

Gene Involved in Transcriptional Activation of the hrp Regulatory Gene hrpG in Xanthomonas oryzae pv. oryzae

Seiji Tsuge; Takeshi Nakayama; Shinsaku Terashima; Hirokazu Ochiai; Ayako Furutani; Takashi Oku; Kazunori Tsuno; Yasuyuki Kubo; Hisatoshi Kaku

A novel regulatory gene, trh, which is involved in hrp gene expression, is identified in the plant pathogen Xanthomonas oryzae pv. oryzae. In the trh mutant, expression of HrpG, which is a key regulator for hrp gene expression, is reduced both under the in vitro hrp-inducing condition and in planta.


Molecular Plant-microbe Interactions | 2012

XopR, a Type III Effector Secreted by Xanthomonas oryzae pv. oryzae, Suppresses Microbe-Associated Molecular Pattern-Triggered Immunity in Arabidopsis thaliana

Chiharu Akimoto-Tomiyama; Ayako Furutani; Seiji Tsuge; Erica J. Washington; Yoko Nishizawa; Eiichi Minami; Hirokazu Ochiai

Xanthomonas oryzae pv. oryzae is the causal agent of bacterial blight of rice. The XopR protein, secreted into plant cells through the type III secretion apparatus, is widely conserved in xanthomonads and is predicted to play important roles in bacterial pathogenicity. Here, we examined the function of XopR by constructing transgenic Arabidopsis thaliana plants expressing it under control of the dexamethasone (DEX)-inducible promoter. In the transgenic plants treated with DEX, slightly delayed growth and variegation on leaves were observed. Induction of four microbe-associated molecular pattern (MAMP)-specific early-defense genes by a nonpathogenic X. campestris pv. campestris hrcC deletion mutant were strongly suppressed in the XopR-expressing plants. XopR expression also reduced the deposition of callose, an immune response induced by flg22. When transiently expressed in Nicotiana benthamiana, a XopR::Citrine fusion gene product localized to the plasma membrane. The deletion of XopR in X. oryzae pv. oryzae resulted in reduced pathogenicity on host rice plants. Collectively, these results suggest that XopR inhibits basal defense responses in plants rapidly after MAMP recognition.

Collaboration


Dive into the Seiji Tsuge's collaboration.

Top Co-Authors

Avatar

Yasuyuki Kubo

Kyoto Prefectural University

View shared research outputs
Top Co-Authors

Avatar

Ayako Furutani

Kyoto Prefectural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hisatoshi Kaku

Kyoto Prefectural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Osamu Horino

Kyoto Prefectural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gento Tsuji

Kyoto Prefectural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yumi Ikawa

Kyoto Prefectural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge