Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Selene K. Swanson is active.

Publication


Featured researches published by Selene K. Swanson.


Cell | 2005

Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription

Michael J. Carrozza; Bing Li; Laurence Florens; Tamaki Suganuma; Selene K. Swanson; Kenneth K. Lee; Wei Jong Shia; Scott Anderson; John R. Yates; Michael P. Washburn; Jerry L. Workman

Yeast Rpd3 histone deacetylase plays an important role at actively transcribed genes. We characterized two distinct Rpd3 complexes, Rpd3L and Rpd3S, by MudPIT analysis. Both complexes shared a three subunit core and Rpd3L contains unique subunits consistent with being a promoter targeted corepressor. Rco1 and Eaf3 were subunits specific to Rpd3S. Mutants of RCO1 and EAF3 exhibited increased acetylation in the FLO8 and STE11 open reading frames (ORFs) and the appearance of aberrant transcripts initiating within the body of these ORFs. Mutants in the RNA polymerase II-associated SET2 histone methyltransferase also displayed these defects. Set2 functioned upstream of Rpd3S and the Eaf3 methyl-histone binding chromodomain was important for recruitment of Rpd3S and for deacetylation within the STE11 ORF. These data indicate that Pol II-associated Set2 methylates H3 providing a transcriptional memory which signals for deacetylation of ORFs by Rpd3S. This erases transcription elongation-associated acetylation to suppress intragenic transcription initiation.


Nature | 2011

Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein

Kasia Hrecka; Caili Hao; Magda Gierszewska; Selene K. Swanson; Malgorzata Kesik-Brodacka; Smita Srivastava; Laurence Florens; Michael P. Washburn; Jacek Skowronski

Macrophages and dendritic cells have key roles in viral infections, providing virus reservoirs that frequently resist antiviral therapies and linking innate virus detection to antiviral adaptive immune responses. Human immunodeficiency virus 1 (HIV-1) fails to transduce dendritic cells and has a reduced ability to transduce macrophages, due to an as yet uncharacterized mechanism that inhibits infection by interfering with efficient synthesis of viral complementary DNA. In contrast, HIV-2 and related simian immunodeficiency viruses (SIVsm/mac) transduce myeloid cells efficiently owing to their virion-associated Vpx accessory proteins, which counteract the restrictive mechanism. Here we show that the inhibition of HIV-1 infection in macrophages involves the cellular SAM domain HD domain-containing protein 1 (SAMHD1). Vpx relieves the inhibition of lentivirus infection in macrophages by loading SAMHD1 onto the CRL4DCAF1 E3 ubiquitin ligase, leading to highly efficient proteasome-dependent degradation of the protein. Mutations in SAMHD1 cause Aicardi–Goutières syndrome, a disease that produces a phenotype that mimics the effects of a congenital viral infection. Failure to dispose of endogenous nucleic acid debris in Aicardi–Goutières syndrome results in inappropriate triggering of innate immune responses via cytosolic nucleic acids sensors. Thus, our findings show that macrophages are defended from HIV-1 infection by a mechanism that prevents an unwanted interferon response triggered by self nucleic acids, and uncover an intricate relationship between innate immune mechanisms that control response to self and to retroviral pathogens.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler

Aaron J. Gottschalk; Gyula Timinszky; Stephanie E. Kong; Jingji Jin; Yong Cai; Selene K. Swanson; Michael P. Washburn; Laurence Florens; Andreas G. Ladurner; Joan Weliky Conaway; Ronald C. Conaway

Posttranslational modifications play a key role in recruiting chromatin remodeling and modifying enzymes to specific regions of chromosomes to modulate chromatin structure. Alc1 (amplified in liver cancer 1), a member of the SNF2 ATPase superfamily with a carboxy-terminal macrodomain, is encoded by an oncogene implicated in the pathogenesis of hepatocellular carcinoma. Here we show that Alc1 interacts transiently with chromatin-associated proteins, including histones and the poly(ADP-ribose) polymerase Parp1. Alc1 ATPase and chromatin remodeling activities are strongly activated by Parp1 and its substrate NAD and require an intact macrodomain capable of binding poly(ADP-ribose). Alc1 is rapidly recruited to nucleosomes in vitro and to chromatin in cells when Parp1 catalyzes PAR synthesis. We propose that poly(ADP-ribosyl)ation of chromatin-associated Parp1 serves as a mechanism for targeting a SNF2 family remodeler to chromatin.


Nature Cell Biology | 2006

Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1

Tingting Yao; Ling Song; Wei Xu; Laurence Florens; Selene K. Swanson; Michael P. Washburn; Ronald C. Conaway; Joan Weliky Conaway; Robert E. Cohen

Uch37 is one of the three principal deubiquitinating enzymes (DUBs), and the only ubiquitin carboxy-terminal hydrolase (UCH)-family protease, that is associated with mammalian proteasomes. We show that Uch37 is responsible for the ubiquitin isopeptidase activity in the PA700 (19S) proteasome regulatory complex. PA700 isopeptidase disassembles Lys 48-linked polyubiquitin specifically from the distal end of the chain, a property that may be used to clear poorly ubiquitinated or unproductively bound substrates from the proteasome. To better understand Uch37 function and the mechanism responsible for its specificity, we investigated how Uch37 is recruited to proteasomes. Uch37 binds through Adrm1, a previously unrecognized orthologue of Saccharomyces cerevisiae Rpn13p, which in turn is bound to the S1 (also known as Rpn2) subunit of the 19S complex. Adrm1 (human Rpn13, hRpn13) binds the carboxy-terminal tail of Uch37, a region that is distinct from the UCH catalytic domain, which we show inhibits Uch37 activity. Following binding, Adrm1 relieves Uch37 autoinhibition, accelerating the hydrolysis of ubiquitin-7-amido-4-methylcoumarin (ubiquitin−AMC). However, neither Uch37 alone nor the Uch37–Adrm1 or Uch37–Adrm1–S1 complexes can hydrolyse di-ubiquitin efficiently; rather, incorporation into the 19S complex is required to enable processing of polyubiquitin chains.


Cell | 2011

Human Mediator Subunit MED26 Functions as a Docking Site for Transcription Elongation Factors

Hidehisa Takahashi; Tari Parmely; Shigeo Sato; Chieri Tomomori-Sato; Charles A. S. Banks; Stephanie E. Kong; Henrietta Szutorisz; Selene K. Swanson; Skylar Martin-Brown; Michael P. Washburn; Laurence Florens; Chris Seidel; Chengqi Lin; Edwin R. Smith; Ali Shilatifard; Ronald C. Conaway; Joan Weliky Conaway

Promoter-proximal pausing by initiated RNA polymerase II (Pol II) and regulated release of paused polymerase into productive elongation has emerged as a major mechanism of transcription activation. Reactivation of paused Pol II correlates with recruitment of super-elongation complexes (SECs) containing ELL/EAF family members, P-TEFb, and other proteins, but the mechanism of their recruitment is an unanswered question. Here, we present evidence for a role of human Mediator subunit MED26 in this process. We identify in the conserved N-terminal domain of MED26 overlapping docking sites for SEC and a second ELL/EAF-containing complex, as well as general initiation factor TFIID. In addition, we present evidence consistent with the model that MED26 can function as a molecular switch that interacts first with TFIID in the Pol II initiation complex and then exchanges TFIID for complexes containing ELL/EAF and P-TEFb to facilitate transition of Pol II into the elongation stage of transcription.


Journal of Biological Chemistry | 2005

A Mammalian Chromatin Remodeling Complex with Similarities to the Yeast INO80 Complex

Jingji Jin; Yong Cai; Tingting Yao; Aaron J. Gottschalk; Laurence Florens; Selene K. Swanson; José L. Gutiérrez; Michael K. Coleman; Jerry L. Workman; Arcady Mushegian; Michael P. Washburn; Ronald C. Conaway; Joan Weliky Conaway

The mammalian Tip49a and Tip49b proteins belong to an evolutionarily conserved family of AAA+ ATPases. In Saccharomyces cerevisiae, orthologs of Tip49a and Tip49b, called Rvb1 and Rvb2, respectively, are subunits of two distinct ATP-dependent chromatin remodeling complexes, SWR1 and INO80. We recently demonstrated that the mammalian Tip49a and Tip49b proteins are integral subunits of a chromatin remodeling complex bearing striking similarities to the S. cerevisiae SWR1 complex (Cai, Y., Jin, J., Florens, L., Swanson, S. K., Kusch, T., Li, B., Workman, J. L., Washburn, M. P., Conaway, R. C., and Conaway, J. W. (2005) J. Biol. Chem. 280, 13665–13670). In this report, we identify a new mammalian Tip49a- and Tip49b-containing ATP-dependent chromatin remodeling complex, which includes orthologs of 8 of the 15 subunits of the S. cerevisiae INO80 chromatin remodeling complex as well as at least five additional subunits unique to the human INO80 (hINO80) complex. Finally, we demonstrate that, similar to the yeast INO80 complex, the hINO80 complex exhibits DNA- and nucleosome-activated ATPase activity and catalyzes ATP-dependent nucleosome sliding.


PLOS Pathogens | 2008

Lentiviral Vpx Accessory Factor Targets VprBP/DCAF1 Substrate Adaptor for Cullin 4 E3 Ubiquitin Ligase to Enable Macrophage Infection

Smita Srivastava; Selene K. Swanson; Nicolas Manel; Laurence Florens; Michael P. Washburn; Jacek Skowronski

Vpx is a small virion-associated adaptor protein encoded by viruses of the HIV-2/SIVsm lineage of primate lentiviruses that enables these viruses to transduce monocyte-derived cells. This probably reflects the ability of Vpx to overcome an as yet uncharacterized block to an early event in the virus life cycle in these cells, but the underlying mechanism has remained elusive. Using biochemical and proteomic approaches, we have found that Vpx protein of the pathogenic SIVmac 239 strain associates with a ternary protein complex comprising DDB1 and VprBP subunits of Cullin 4–based E3 ubiquitin ligase, and DDA1, which has been implicated in the regulation of E3 catalytic activity, and that Vpx participates in the Cullin 4 E3 complex comprising VprBP. We further demonstrate that the ability of SIVmac as well as HIV-2 Vpx to interact with VprBP and its associated Cullin 4 complex is required for efficient reverse transcription of SIVmac RNA genome in primary macrophages. Strikingly, macrophages in which VprBP levels are depleted by RNA interference resist SIVmac infection. Thus, our observations reveal that Vpx interacts with both catalytic and regulatory components of the ubiquitin proteasome system and demonstrate that these interactions are critical for Vpx ability to enable efficient SIVmac replication in primary macrophages. Furthermore, they identify VprBP/DCAF1 substrate receptor for Cullin 4 E3 ubiquitin ligase and its associated protein complex as immediate downstream effector of Vpx for this function. Together, our findings suggest a model in which Vpx usurps VprBP-associated Cullin 4 ubiquitin ligase to enable efficient reverse transcription and thereby overcome a block to lentivirus replication in monocyte-derived cells, and thus provide novel insights into the underlying molecular mechanism.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Lentiviral Vpr usurps Cul4–DDB1[VprBP] E3 ubiquitin ligase to modulate cell cycle

Kasia Hrecka; Magdalena Gierszewska; Smita Srivastava; Lukasz Kozaczkiewicz; Selene K. Swanson; Laurence Florens; Michael P. Washburn; Jacek Skowronski

The replication of viruses depends on the cell cycle status of the infected cells. Viruses have evolved functions that alleviate restrictions imposed on their replication by the host. Vpr, an accessory factor of primate lentiviruses, arrests cells at the DNA damage checkpoint in G2 phase of the cell cycle, but the mechanism underlying this effect has remained elusive. Here we report that Vpr proteins of both the human (HIV-1) and the distantly related simian (SIVmac) immunodeficiency viruses specifically associate with a protein complex comprising subunits of E3 ubiquitin ligase assembled on Cullin-4 scaffold (Cul4–DDB1[VprBP]). We show that Vpr binding to Cul4–DDB1[VprBP] leads to increased neddylation and elevated intrinsic ubiquitin ligase activity of this E3. This effect is mediated through the VprBP subunit of the complex, which recently has been suggested to function as a substrate receptor for Cul4. We also demonstrate that VprBP regulates G1 phase and is essential for the completion of DNA replication in S phase. Furthermore, the ability of Vpr to arrest cells in G2 phase correlates with its ability to interact with Cul4–DDB1[VprBP] E3 complex. Our studies identify the Cul4–DDB1[VprBP] E3 ubiquitin ligase complex as the downstream effector of lentiviral Vpr for the induction of cell cycle arrest in G2 phase and suggest that Vpr may use this complex to perturb other aspects of the cell cycle and DNA metabolism in infected cells.


Journal of Biological Chemistry | 2005

The Mammalian YL1 Protein Is a Shared Subunit of the TRRAP/TIP60 Histone Acetyltransferase and SRCAP Complexes

Yong Cai; Jingji Jin; Laurence Florens; Selene K. Swanson; Thomas Kusch; Bing Li; Jerry L. Workman; Michael P. Washburn; Ronald C. Conaway; Joan Weliky Conaway

The multiprotein mammalian TRRAP/TIP60-containing histone acetyltransferase (HAT) complex performs critical functions in a variety of cellular processes including transcriptional activation, double strand DNA break repair, and apoptosis. We previously isolated the TRRAP/TIP60 complex from HeLa cells (Cai, Y., Jin, J., Tomomori-Sato, C., Sato, S., Sorokina, I., Parmely, T. J., Conaway, R. C., and Conaway, J. W. (2003) J. Biol. Chem. 278, 42733–42736). Analysis of proteins present in preparations of the TRRAP/TIP60 complex led to the identification of several new subunits, as well as several potential subunits including the YL1 protein. Here we present evidence that the YL1 protein is a previously unrecognized subunit of the TRRAP/TIP60 HAT complex. In addition, we present evidence that YL1 is also a component of a novel mammalian multiprotein complex that includes the SNF2-related helicase SRCAP and resembles the recently described Saccharomyces cerevisiae SWR1 chromatin remodeling complex. Taken together, our findings identify the YL1 protein as a new subunit of the TRRAP/TIP60 HAT complex, and they suggest that YL1 plays multiple roles in chromatin modification and remodeling in cells.


Journal of Biological Chemistry | 2010

Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex

Yong Cai; Jingji Jin; Selene K. Swanson; Michael D. Cole; Seung H. Choi; Laurence Florens; Michael P. Washburn; Joan Weliky Conaway; Ronald C. Conaway

Human MOF (MYST1), a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs), is the human ortholog of the Drosophila males absent on the first (MOF) protein. MOF is the catalytic subunit of the male-specific lethal (MSL) HAT complex, which plays a key role in dosage compensation in the fly and is responsible for a large fraction of histone H4 lysine 16 (H4K16) acetylation in vivo. MOF was recently reported to be a component of a second HAT complex, designated the non-specific lethal (NSL) complex (Mendjan, S., Taipale, M., Kind, J., Holz, H., Gebhardt, P., Schelder, M., Vermeulen, M., Buscaino, A., Duncan, K., Mueller, J., Wilm, M., Stunnenberg, H. G., Saumweber, H., and Akhtar, A. (2006) Mol. Cell 21, 811–823). Here we report an analysis of the subunit composition and substrate specificity of the NSL complex. Proteomic analyses of complexes purified through multiple candidate subunits reveal that NSL is composed of nine subunits. Two of its subunits, WD repeat domain 5 (WDR5) and host cell factor 1 (HCF1), are shared with members of the MLL/SET family of histone H3 lysine 4 (H3K4) methyltransferase complexes, and a third subunit, MCRS1, is shared with the human INO80 chromatin-remodeling complex. In addition, we show that assembly of the MOF HAT into MSL or NSL complexes controls its substrate specificity. Although MSL-associated MOF acetylates nucleosomal histone H4 almost exclusively on lysine 16, NSL-associated MOF exhibits a relaxed specificity and also acetylates nucleosomal histone H4 on lysines 5 and 8.

Collaboration


Dive into the Selene K. Swanson's collaboration.

Top Co-Authors

Avatar

Laurence Florens

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Michael P. Washburn

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jerry L. Workman

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Joan Weliky Conaway

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Ronald C. Conaway

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Susan M. Abmayr

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tamaki Suganuma

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Yong Cai

Stowers Institute for Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge