Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Selvakumar Subbian is active.

Publication


Featured researches published by Selvakumar Subbian.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Imaging tuberculosis with endogenous β-lactamase reporter enzyme fluorescence in live mice

Ying Kong; Hequan Yao; Hongjun Ren; Selvakumar Subbian; Suat L. G. Cirillo; James C. Sacchettini; Jianghong Rao; Jeffrey D. Cirillo

The slow growth rate and genetic intractability of tubercle bacilli has hindered progress toward understanding tuberculosis, one of the most frequent causes of death worldwide. We overcame this roadblock through development of near-infrared (NIR) fluorogenic substrates for β-lactamase, an enzyme expressed by tubercle bacilli, but not by their eukaryotic hosts, to allow real-time imaging of pulmonary infections and rapid quantification of bacteria in living animals by a strategy called reporter enzyme fluorescence (REF). This strategy has a detection limit of 6 ± 2 × 102 colony-forming units (CFU) of bacteria with the NIR substrate CNIR5 in only 24 h of incubation in vitro, and as few as 104 CFU in the lungs of live mice. REF can also be used to differentiate infected from uninfected macrophages by using confocal microscopy and fluorescence activated cell sorting. Mycobacterium tuberculosis and the bacillus Calmette–Guérin can be tracked directly in the lungs of living mice without sacrificing the animals. Therapeutic efficacy can also be evaluated through loss of REF signal within 24 h posttreatment by using in vitro whole-bacteria assays directly in living mice. We expect that rapid quantification of bacteria within tissues of a living host and in the laboratory is potentially transformative for tuberculosis virulence studies, evaluation of therapeutics, and efficacy of vaccine candidates. This is a unique use of an endogenous bacterial enzyme probe to detect and image tubercle bacilli that demonstrates REF is likely to be useful for the study of many bacterial infections.


PLOS Pathogens | 2011

Phosphodiesterase-4 inhibition alters gene expression and improves isoniazid-mediated clearance of Mycobacterium tuberculosis in rabbit lungs.

Selvakumar Subbian; Liana Tsenova; Paul O'Brien; Guibin Yang; Mi-Sun Koo; Blas Peixoto; Dorothy Fallows; Véronique Dartois; George W. Muller; Gilla Kaplan

Tuberculosis (TB) treatment is hampered by the long duration of antibiotic therapy required to achieve cure. This indolent response has been partly attributed to the ability of subpopulations of less metabolically active Mycobacterium tuberculosis (Mtb) to withstand killing by current anti-TB drugs. We have used immune modulation with a phosphodiesterase-4 (PDE4) inhibitor, CC-3052, that reduces tumor necrosis factor alpha (TNF-α) production by increasing intracellular cAMP in macrophages, to examine the crosstalk between host and pathogen in rabbits with pulmonary TB during treatment with isoniazid (INH). Based on DNA microarray, changes in host gene expression during CC-3052 treatment of Mtb infected rabbits support a link between PDE4 inhibition and specific down-regulation of the innate immune response. The overall pattern of host gene expression in the lungs of infected rabbits treated with CC-3052, compared to untreated rabbits, was similar to that described in vitro in resting Mtb infected macrophages, suggesting suboptimal macrophage activation. These alterations in host immunity were associated with corresponding down-regulation of a number of Mtb genes that have been associated with a metabolic shift towards dormancy. Moreover, treatment with CC-3052 and INH resulted in reduced expression of those genes associated with the bacterial response to INH. Importantly, CC-3052 treatment of infected rabbits was associated with reduced ability of Mtb to withstand INH killing, shown by improved bacillary clearance, from the lungs of co-treated animals compared to rabbits treated with INH alone. The results of our study suggest that changes in Mtb gene expression, in response to changes in the host immune response, can alter the responsiveness of the bacteria to antimicrobial agents. These findings provide a basis for exploring the potential use of adjunctive immune modulation with PDE4 inhibitors to enhance the efficacy of existing anti-TB treatment.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Macrophage migration inhibitory factor (MIF) is a critical mediator of the innate immune response to Mycobacterium tuberculosis

Rituparna Das; Mi-Sun Koo; Bae-Hoon Kim; Shevin T. Jacob; Selvakumar Subbian; Jie Yao; Lin Leng; Rebecca J. Levy; Charles Murchison; William J. Burman; Christopher C. Moore; W. Michael Scheld; John R. David; Gilla Kaplan; John D. MacMicking; Richard Bucala

Significance Failure of the host immune system to control infection with Mycobacterium tuberculosis is a major determinant of tuberculosis (TB) disease. In this work, we examined the role of macrophage migration inhibitory factor (MIF), a cytokine that is encoded in a functionally polymorphic locus in humans, in TB. We found genetic low expressers of MIF to be enriched in a population of patients with HIV and disseminated TB. From our work in cellular and mouse models, we propose a key mechanism by which MIF regulates bacterial recognition as the first step in triggering inflammatory pathways to enable mycobacterial control. Macrophage migration inhibitory factor (MIF), an innate cytokine encoded in a functionally polymorphic genetic locus, contributes to detrimental inflammation but may be crucial for controlling infection. We explored the role of variant MIF alleles in tuberculosis. In a Ugandan cohort, genetic low expressers of MIF were 2.4-times more frequently identified among patients with Mycobacterium tuberculosis (TB) bacteremia than those without. We also found mycobacteria-stimulated transcription of MIF and serum MIF levels to be correlated with MIF genotype in human macrophages and in a separate cohort of US TB patients, respectively. To determine mechanisms for MIF’s protective role, we studied both aerosolized and i.v. models of mycobacterial infection and observed MIF-deficient mice to succumb more quickly with higher organism burden, increased lung pathology, and decreased innate cytokine production (TNF-α, IL-12, IL-10). MIF-deficient animals showed increased pulmonary neutrophil accumulation but preserved adaptive immune response. MIF-deficient macrophages demonstrated decreased cytokine and reactive oxygen production and impaired mycobacterial killing. Transcriptional investigation of MIF-deficient macrophages revealed reduced expression of the pattern recognition receptor dectin-1; restoration of dectin-1 expression recovered innate cytokine production and mycobacterial killing. Our data place MIF in a crucial upstream position in the innate immune response to mycobacteria and suggest that commonly occurring low expression MIF alleles confer an increased risk of TB disease in some populations.


PLOS ONE | 2011

Phosphodiesterase 4 inhibition reduces innate immunity and improves isoniazid clearance of Mycobacterium tuberculosis in the lungs of infected mice.

Mi-Sun Koo; Claudia Manca; Guibin Yang; Paul O'Brien; Nackmoon Sung; Liana Tsenova; Selvakumar Subbian; Dorothy Fallows; George W. Muller; Sabine Ehrt; Gilla Kaplan

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is one of the leading infectious disease causes of morbidity and mortality worldwide. Though current antibiotic regimens can cure the disease, treatment requires at least six months of drug therapy. One reason for the long duration of therapy is that the currently available TB drugs were selected for their ability to kill replicating organisms and are less effective against subpopulations of non-replicating persistent bacilli. Evidence from in vitro models of Mtb growth and mouse infection studies suggests that host immunity may provide some of the environmental cues that drive Mtb towards non-replicating persistence. We hypothesized that selective modulation of the host immune response to modify the environmental pressure on the bacilli may result in better bacterial clearance during TB treatment. For this proof of principal study, we compared bacillary clearance from the lungs of Mtb-infected mice treated with the anti-TB drug isoniazid (INH) in the presence and absence of an immunomodulatory phosphodiesterase 4 inhibitor (PDE4i), CC-3052. The effects of CC-3052 on host global gene expression, induction of cytokines, and T cell activation in the lungs of infected mice were evaluated. We show that CC-3052 modulates the innate immune response without causing generalized immune suppression. Immune modulation combined with INH treatment improved bacillary clearance and resulted in smaller granulomas and less lung pathology, compared to treatment with INH alone. This novel strategy of combining anti-TB drugs with an immune modulating molecule, if applied appropriately to patients, may shorten the duration of TB treatment and improve clinical outcome.


American Journal of Pathology | 2011

Phosphodiesterase-4 Inhibition Combined with Isoniazid Treatment of Rabbits with Pulmonary Tuberculosis Reduces Macrophage Activation and Lung Pathology

Selvakumar Subbian; Liana Tsenova; Paul O'Brien; Guibin Yang; Mi-Sun Koo; Blas Peixoto; Dorothy Fallows; Jerome B. Zeldis; George W. Muller; Gilla Kaplan

Tuberculosis (TB) is responsible for significant morbidity and mortality worldwide. Even after successful microbiological cure of TB, many patients are left with residual pulmonary damage that can lead to chronic respiratory impairment and greater risk of additional TB episodes due to reinfection with Mycobacterium tuberculosis. Elevated levels of the proinflammatory cytokine tumor necrosis factor-α and several other markers of inflammation, together with expression of matrix metalloproteinases, have been associated with increased risk of pulmonary fibrosis, tissue damage, and poor treatment outcomes in TB patients. In this study, we used a rabbit model of pulmonary TB to evaluate the impact of adjunctive immune modulation, using a phosphodiesterase-4 inhibitor that dampens the innate immune response, on the outcome of treatment with the antibiotic isoniazid. Our data show that cotreatment of M. tuberculosis infected rabbits with the phosphodiesterase-4 inhibitor CC-3052 plus isoniazid significantly reduced the extent of immune pathogenesis, compared with antibiotic alone, as determined by histologic analysis of infected tissues and the expression of genes involved in inflammation, fibrosis, and wound healing in the lungs. Combined treatment with an antibiotic and CC-3052 not only lessened disease but also improved bacterial clearance from the lungs. These findings support the potential for adjunctive immune modulation to improve the treatment of pulmonary TB and reduce the risk of chronic respiratory impairment.


Open Biology | 2011

Chronic pulmonary cavitary tuberculosis in rabbits: a failed host immune response.

Selvakumar Subbian; Liana Tsenova; Guibin Yang; Paul O'Brien; Sven D.C. Parsons; Blas Peixoto; Leslie Taylor; Dorothy Fallows; Gilla Kaplan

The molecular determinants of the immune response to Mycobacterium tuberculosis HN878 infection in a rabbit model of pulmonary cavitary tuberculosis were studied. Aerosol infection of rabbits resulted in a highly differentially expressed global transcriptome in the lungs at 2 weeks, which dropped at 4 weeks and then gradually increased. While IFNγ was progressively upregulated throughout the infection, several other genes in the IFNγ network were not. T-cell activation network genes were gradually upregulated and maximally induced at 12 weeks. Similarly, the IL4 and B-cell activation networks were progressively upregulated, many reaching high levels between 12 and 16 weeks. Delayed peak expression of genes associated with macrophage activation and Th1 type immunity was noted. Although spleen CD4+ and CD8+ T cells showed maximal tuberculosis antigen-specific activation by 8 weeks, macrophage activation in lungs, lymph nodes and spleen did not peak until 12 weeks. In the lungs, infecting bacilli grew exponentially up to 4 weeks, followed by a steady-state high bacillary load to 12 weeks that moderately increased during cavitation at 16 weeks. Thus, the outcome of HN878 infection of rabbits was determined early during infection by a suboptimal activation of innate immunity and delayed T-cell activation.


American Journal of Pathology | 2012

Spontaneous Latency in a Rabbit Model of Pulmonary Tuberculosis

Selvakumar Subbian; Liana Tsenova; Paul O'Brien; Guibin Yang; Nicole L Kushner; Sven D.C. Parsons; Blas Peixoto; Dorothy Fallows; Gilla Kaplan

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is an exquisitely adapted human pathogen capable of surviving for decades in the lungs of immune-competent individuals in the absence of disease. The World Health Organization estimates that 2 billion people have latent TB infection (LTBI), defined by a positive immunological response to Mtb antigens, with no clinical signs of disease. A better understanding of host and pathogen determinants of LTBI and subsequent reactivation would benefit TB control efforts. Animal models of LTBI have been hampered generally by an inability to achieve complete bacillary clearance. Herein, we have characterized a rabbit model of LTBI in which, similar to most humans, complete clearance of pulmonary Mtb infection and pathological characteristics occurs spontaneously. The evidence that Mtb-CDC1551-infected rabbits achieve LTBI, rather than sterilization, is based on the ability of the bacilli to be reactivated after immune suppression. These rabbits showed early activation of T cells and macrophages and an early peak in the TNFα level, which decreased in association with clearance of bacilli from the lungs. In the absence of sustained tumor necrosis factor-α production, no necrosis was seen in the evolving lung granulomas. In addition, bacillary control was associated with down-regulation of several metalloprotease genes and an absence of lung fibrosis. This model will be used to characterize molecular markers of protective immunity and reactivation.


Infection and Immunity | 2009

Protection of Mycobacterium tuberculosis from Reactive Oxygen Species Conferred by the mel2 Locus Impacts Persistence and Dissemination

Suat L. G. Cirillo; Selvakumar Subbian; Bing Chen; Torin R. Weisbrod; William R. Jacobs; Jeffrey D. Cirillo

ABSTRACT Persistence of Mycobacterium tuberculosis in humans represents a major roadblock to elimination of tuberculosis. We describe identification of a locus in M. tuberculosis, mel2, that displays similarity to bacterial bioluminescent loci and plays an important role during persistence in mice. We constructed a deletion of the mel2 locus and found that the mutant displays increased susceptibility to reactive oxygen species (ROS). Upon infection of mice by aerosol the mutant grows normally until the persistent stage, where it does not persist as well as wild type. Histopathological analyses show that infection with the mel2 mutant results in reduced pathology and both CFU and histopathology indicate that dissemination of the mel2 mutant to the spleen is delayed. These data along with growth in activated macrophages and infection of Phox−/− and iNOS−/− mice and bone marrow-derived macrophages suggest that the primary mechanism by which mel2 affects pathogenesis is through its ability to confer resistance to ROS. These studies provide the first insight into the mechanism of action for this novel class of genes that are related to bioluminescence genes. The role of mel2 in resistance to ROS is important for persistence and dissemination of M. tuberculosis and suggests that homologues in other bacterial species are likely to play a role in pathogenesis.


Cell Communication and Signaling | 2012

Strain specific transcriptional response in Mycobacterium tuberculosis infected macrophages

Mi-Sun Koo; Selvakumar Subbian; Gilla Kaplan

BackgroundTuberculosis (TB), a bacterial infection caused by Mycobacterium tuberculosis (Mtb) remains a significant health problem worldwide with a third of the world population infected and nearly nine million new cases claiming 1.1 million deaths every year. The outcome following infection by Mtb is determined by a complex and dynamic host-pathogen interaction in which the phenotype of the pathogen and the immune status of the host play a role. However, the molecular mechanism by which Mtb strains induce different responses during intracellular infection of the host macrophage is not fully understood. To explore the early molecular events triggered upon Mtb infection of macrophages, we studied the transcriptional responses of murine bone marrow-derived macrophages (BMM) to infection with two clinical Mtb strains, CDC1551 and HN878. These strains have previously been shown to differ in their virulence/immunogenicity in the mouse and rabbit models of pulmonary TB.ResultsIn spite of similar intracellular growth rates, we observed that compared to HN878, infection by CDC1551 of BMM was associated with an increased global transcriptome, up-regulation of a specific early (6 hours) immune response network and significantly elevated nitric oxide production. In contrast, at 24 hours post-infection of BMM by HN878, more host genes involved in lipid metabolism, including cholesterol metabolism and prostaglandin synthesis were up-regulated, compared to infection with CDC1551.In association with the differences in the macrophage responses to infection with the 2 Mtb strains, intracellular CDC1551 expressed higher levels of stress response genes than did HN878.ConclusionsIn association with the early and more robust macrophage activation, intracellular CDC1551 cells were exposed to a higher level of stress leading to increased up-regulation of the bacterial stress response genes. In contrast, sub-optimal activation of macrophages and induction of a dysregulated host cell lipid metabolism favored a less stressful intracellular environment for HN878. Our findings suggest that the ability of CDC1551 and HN878 to differentially activate macrophages during infection probably determines their ability to either resist host cell immunity and progress to active disease or to succumb to the host protective responses and be driven into a non-replicating latent state in rabbit lungs.


Tuberculosis | 2009

Application of optical imaging to study of extrapulmonary spread by tuberculosis

Ying Kong; Selvakumar Subbian; Suat L. G. Cirillo; Jeffrey D. Cirillo

The incidence of extrapulmonary tuberculosis is increasing, possibly due to the high frequency of co-infection with HIV. Extrapulmonary infections complicate diagnosis, have higher mortality rates and are more difficult to treat. Insight into the mechanisms involved in extrapulmonary spread of tuberculosis is critical to improving management. We set out to better understand extrapulmonary spread kinetics in mice and guinea pigs as well as the effects of infectious dose. We found that extrapulmonary spread occurs at a discrete time point when infected by low-dose aerosol, but at high-dose aerosol it occurs within the first 24h. The ability to follow tuberculosis in real-time during infection would allow us to better address the mechanisms involved. We found that mycobacteria can be optically imaged after pulmonary infection in the mouse lung, suggesting that this technology could be applied to study of extrapulmonary spread of tuberculosis.

Collaboration


Dive into the Selvakumar Subbian's collaboration.

Top Co-Authors

Avatar

Gilla Kaplan

Public Health Research Institute

View shared research outputs
Top Co-Authors

Avatar

Dorothy Fallows

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Blas Peixoto

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar

Mi-Sun Koo

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar

Guibin Yang

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar

Paul O'Brien

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge