Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Senthil Kumar Thamilarasan is active.

Publication


Featured researches published by Senthil Kumar Thamilarasan.


BMC Genomics | 2014

Genome-wide analysis of the distribution of AP2/ERF transcription factors reveals duplication and CBFs genes elucidate their potential function in Brassica oleracea.

Senthil Kumar Thamilarasan; Jong-In Park; Hee-Jeong Jung; Ill-Sup Nou

BackgroundCabbage (Brassica oleracea) is one of the most important leaf vegetables grown worldwide. The entire cabbage genome sequence and more than fifty thousand proteins have been obtained to date. However a high degree of sequence similarity and conserved genome structure remain between cabbage and Arabidopsis; therefore, Arabidopsis is a viable reference species for comparative genomics studies. Transcription factors (TFs) are important regulators involved in plant development and physiological processes and the AP2/ERF protein family contains transcriptional factors that play a crucial role in plant growth and development, as well as response to biotic and abiotic stress conditions in plants. However, no detailed expression profile of AP2/ERF-like genes is available for B. oleracea.ResultsIn the present study, 226 AP2/ERF TFs were identified from B. oleracea based on the available genome sequence. Based on sequence similarity, the AP2/ERF superfamily was classified into five groups (DREB, ERF, AP2, RAV and Soloist) and 15 subgroups. The identification, classification, phylogenetic construction, conserved motifs, chromosome distribution, functional annotation, expression patterns and interaction network were then predicted and analyzed. AP2/ERF transcription factor expression levels exhibited differences in response to varying abiotic stresses based on expressed sequence tags (ESTs). BoCBF1a, 1b, 2, 3 and 4, which were highly conserved in Arabidopsis and B. rapa CBF/DREB genes families were well characterized. Expression analysis enabled elucidation of the molecular and genetic level expression patterns of cold tolerance (CT) and susceptible lines (CS) of cabbage and indicated that all BoCBF genes responded to abiotic stresses.ConclusionsComprehensive analysis of the physiological functions and biological roles of AP2/ERF superfamily genes and BoCBF family genes in B. oleracea is required to fully elucidate AP2/ERF, which will provide rich resources and opportunities to understand abiotic stress tolerance in crops.


PLOS ONE | 2014

Genome-Wide Transcriptome Analysis of Two Contrasting Brassica rapa Doubled Haploid Lines under Cold-Stresses Using Br135K Oligomeric Chip

Hee-Jeong Jung; Xiangshu Dong; Jong-In Park; Senthil Kumar Thamilarasan; Sang Sook Lee; Yeon-Ki Kim; Yong-Pyo Lim; Ill-Sup Nou; Yoonkang Hur

Genome wide transcription analysis in response to stresses is important to provide a basis of effective engineering strategies to improve stress tolerance in crop plants. We assembled a Brassica rapa oligomeric microarray (Br135K microarray) using sequence information from 41,173 unigenes and analyzed the transcription profiles of two contrasting doubled haploid (DH) lines, Chiifu and Kenshin, under cold-treatments. The two DH lines showed great differences in electrolyte leakage below −4°C, but similar patterns from 4°C to −2°C. Cold-treatments induced 885 and 858 genes in Chiifu and Kenshin, respectively. Overall, 134, and 56 genes showed an intrinsic difference in expression in Chiifu and Kenshin, respectively. Among 5,349 genes that showed no hit found (NHF) in public databases, 61 and 24 were specifically expressed in Chiifu and Kenshin, respectively. Many transcription factor genes (TFs) also showed various characteristics of expression. BrMYB12, BrMYBL2, BrbHLHs, BrbHLH038, a C2H2, a WRKY, BrDREB19 and a integrase-type TF were induced in a Chiifu-specific fashion, while a bHLH (Bra001826/AT3G21330), bHLH, cycling Dof factor and two Dof type TFs were Kenshin specific. Similar to previous studies, a large number of genes were differently induced or regulated among the two genotypes, but many genes, including NHFs, were specifically or intrinsically expressed with genotype specificity. Expression patterns of known-cold responsive genes in plants resulted in discrepancy to membrane leakage in the two DH lines, indicating that timing of gene expression is more important to conferring freezing tolerance rather than expression levels. Otherwise, the tolerance will be related to the levels of transcripts before cold-treatment or regulated by other mechanisms. Overall, these results indicate common signaling pathways and various transcriptional regulatory mechanisms are working together during cold-treatment of B. rapa. Our newly developed Br135K oligomeric microarray will be useful for transcriptome profiling, and will deliver valuable insight into cold stresses in B. rapa.


International Journal of Molecular Sciences | 2016

Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea

Harshavardhanan Vijayakumar; Senthil Kumar Thamilarasan; Ashokraj Shanmugam; Sathishkumar Natarajan; Hee-Jeong Jung; Jong-In Park; HyeRan Kim; Mi-Young Chung; Ill-Sup Nou

Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18) are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS). Currently, understanding of their function(s) during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST) and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible) under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT) and cold susceptible (CS) lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants.


PLOS ONE | 2016

De Novo Assembly and Transcriptome Analysis of Bulb Onion (Allium cepa L.) during Cold Acclimation Using Contrasting Genotypes.

Jeongsukhyeon Han; Senthil Kumar Thamilarasan; Sathishkumar Natarajan; Jong-In Park; Mi-Young Chung; Ill-Sup Nou

Bulb onion (Allium cepa) is the second most widely cultivated and consumed vegetable crop in the world. During winter, cold injury can limit the production of bulb onion. Genomic resources available for bulb onion are still very limited. To date, no studies on heritably durable cold and freezing tolerance have been carried out in bulb onion genotypes. We applied high-throughput sequencing technology to cold (2°C), freezing (-5 and -15°C), and control (25°C)-treated samples of cold tolerant (CT) and cold susceptible (CS) genotypes of A. cepa lines. A total of 452 million paired-end reads were de novo assembled into 54,047 genes with an average length of 1,331 bp. Based on similarity searches, these genes were aligned with entries in the public non-redundant (nr) database, as well as KEGG and COG database. Differentially expressed genes (DEGs) were identified using log10 values with the FPKM method. Among 5,167DEGs, 491 genes were differentially expressed at freezing temperature compared to the control temperature in both CT and CS libraries. The DEG results were validated with qRT-PCR. We performed GO and KEGG pathway enrichment analyses of all DEGs and iPath interactive analysis found 31 pathways including those related to metabolism of carbohydrate, nucleotide, energy, cofactors and vitamins, other amino acids and xenobiotics biodegradation. Furthermore, a large number of molecular markers were identified from the assembled genes, including simple sequence repeats (SSRs) 4,437 and SNP substitutions of transition and transversion types of CT and CS. Our study is the first to provide a transcriptome sequence resource for Allium spp. with regard to cold and freezing stress. We identified a large set of genes and determined their DEG profiles under cold and freezing conditions using two different genotypes. These data represent a valuable resource for genetic and genomic studies of Allium spp.


Molecules | 2016

Molecular and Functional Characterization of FLOWERING LOCUS T Homologs in Allium cepa.

Ranjith Kumar Manoharan; Jeong Suk Hyeon Han; Harshavardhanan Vijayakumar; Boopathi Subramani; Senthil Kumar Thamilarasan; Jong-In Park; Ill-Sup Nou

Onion bulbing is an important agricultural trait affecting economic value and is regulated by flowering-related genes. FLOWERING LOCUS T (FT)-like gene function is crucial for the initiation of flowering in various plant species and also in asexual reproduction in tuber plants. By employing various computational analysis using RNA-Seq data, we identified eight FT-like genes (AcFT) encoding PEBP (phosphatidylethanolamine-binding protein) domains in Allium cepa. Sequence and phylogenetic analyses of FT-like proteins revealed six proteins that were identical to previously reported AcFT1-6 proteins, as well as one (AcFT7) with a highly conserved region shared with AcFT6 and another (comp106231) with low similarity to MFT protein, but containing a PEBP domain. Homology modelling of AcFT7 proteins showed similar structures and conservation of amino acids crucial for function in AtFT (Arabidopsis) and Hd3a (rice), with variation in the C-terminal region. Further, we analyzed AcFT expression patterns in different transitional stages, as well as under SD (short-day), LD (long-day), and drought treatment in two contrasting genotypic lines EM (early maturation, 36101) and LM (late maturation, 36122). The FT transcript levels were greatly affected by various environmental factors such as photoperiod, temperature and drought. Our results suggest that AcFT7 is a member of the FT-like genes in Allium cepa and may be involved in regulation of onion bulbing, similar to other FT genes. In addition, AcFT4 and AcFT7 could be involved in establishing the difference in timing of bulb maturity between the two contrasting onion lines.


PLOS ONE | 2016

Whole Genome Re-Sequencing and Characterization of Powdery Mildew Disease-Associated Allelic Variation in Melon.

Sathishkumar Natarajan; Hoy-Taek Kim; Senthil Kumar Thamilarasan; Karpagam Veerappan; Jong-In Park; Ill-Sup Nou

Powdery mildew is one of the most common fungal diseases in the world. This disease frequently affects melon (Cucumis melo L.) and other Cucurbitaceous family crops in both open field and greenhouse cultivation. One of the goals of genomics is to identify the polymorphic loci responsible for variation in phenotypic traits. In this study, powdery mildew disease assessment scores were calculated for four melon accessions, ‘SCNU1154’, ‘Edisto47’, ‘MR-1’, and ‘PMR5’. To investigate the genetic variation of these accessions, whole genome re-sequencing using the Illumina HiSeq 2000 platform was performed. A total of 754,759,704 quality-filtered reads were generated, with an average of 82.64% coverage relative to the reference genome. Comparisons of the sequences for the melon accessions revealed around 7.4 million single nucleotide polymorphisms (SNPs), 1.9 million InDels, and 182,398 putative structural variations (SVs). Functional enrichment analysis of detected variations classified them into biological process, cellular component and molecular function categories. Further, a disease-associated QTL map was constructed for 390 SNPs and 45 InDels identified as related to defense-response genes. Among them 112 SNPs and 12 InDels were observed in powdery mildew responsive chromosomes. Accordingly, this whole genome re-sequencing study identified SNPs and InDels associated with defense genes that will serve as candidate polymorphisms in the search for sources of resistance against powdery mildew disease and could accelerate marker-assisted breeding in melon.


Genome | 2016

Characterization and abiotic stress-responsive expression analysis of SGT1 genes in Brassica oleracea

Ashokraj Shanmugam; Senthil Kumar Thamilarasan; Jong-In Park; Mi Young Jung; Ill-Sup Nou

SGT1 genes are involved in enhancing plant responses to various biotic and abiotic stresses. Brassica oleracea is known to contain two types of SGT1 genes, namely suppressor of G2 allele of SKP1 and suppressor of GCR2. In this study, through systematic analysis, four putative SGT1 genes were identified and characterized in B. oleracea. In phylogenetic analysis, the genes clearly formed separate groups, namely BolSGT1a, BolSGT1b (both suppressor of G2 allele of SKP1 types), and BolSGT1 (suppressor of GCR2). Functional domain analysis and organ-specific expression patterns suggested possible roles for BolSGT1 genes during stress conditions. BolSGT1 genes showed significant changes in expression in response to heat, cold, drought, salt, or ABA treatment. Interaction network analysis supported the expression analysis, and showed that the BolSGT1a and BolSGT1b genes are strongly associated with co-regulators during stress conditions. However, the BolSGT1 gene did not show any strong association. Hence, BolSGT1 might be a stress resistance-related gene that functions without a co-regulator. Our results show that BolSGT1 genes are potential target genes to improve B. oleracea resistance to abiotic stresses such as heat, cold, and salt.


Genes | 2015

Molecular Modeling of Myrosinase from Brassica oleracea: A Structural Investigation of Sinigrin Interaction

Sathishkumar Natarajan; Senthil Kumar Thamilarasan; Jong-In Park; Mi-Young Chung; Ill-Sup Nou

Myrosinase, which is present in cruciferous plant species, plays an important role in the hydrolysis of glycosides such as glucosinolates and is involved in plant defense. Brassicaceae myrosinases are diverse although they share common ancestry, and structural knowledge about myrosinases from cabbage (Brassica oleracea) was needed. To address this, we constructed a three-dimensional model structure of myrosinase based on Sinapis alba structures using Iterative Threading ASSEmbly Refinement server (I-TASSER) webserver, and refined model coordinates were evaluated with ProQ and Verify3D. The resulting model was predicted with β/α fold, ten conserved N-glycosylation sites, and three disulfide bridges. In addition, this model shared features with the known Sinapis alba myrosinase structure. To obtain a better understanding of myrosinase–sinigrin interaction, the refined model was docked using Autodock Vina with crucial key amino acids. The key nucleophile residues GLN207 and GLU427 were found to interact with sinigrin to form a hydrogen bond. Further, 20-ns molecular dynamics simulation was performed to examine myrosinase–sinigrin complex stability, revealing that residue GLU207 maintained its hydrogen bond stability throughout the entire simulation and structural orientation was similar to that of the docked state. This conceptual model should be useful for understanding the structural features of myrosinase and their binding orientation with sinigrin.


Journal of Plant Biology | 2017

Genome-wide characterization and stress-responsive expression profiling of MCM genes in Brassica oleracea and Brassica rapa

Ashokraj Shanmugam; Arif Hasan Khan Robin; Senthil Kumar Thamilarasan; Harshavardhanan Vijayakumar; Sathishkumar Natarajan; Hoy-Taek Kim; Jong-In Park; Ill-Sup Nou

The Minichromosome maintenance protein [MCM (2-7)] complex is associated with helicase activity for replication fork formation during DNA replication. We identified and characterized each 12 putative MCM genes from Brassica oleracea and Brassica rapa. MCM genes were classified into nine groups according to their evolutionary relationships. A high number of syntenic regions were present on chromosomes C03 and A03 in B. oleracea and B. rapa, respectively, compared to the other chromosomes. Expression analysis showed that most of the MCM(2-7) helicase-subunit genes and their coregulating MCM genes were upregulated during hydroxyurea (HU) induced stress in B. oleracea. In B. rapa, MCM(2-7) helicase genes BrMCM2_2, BrMCM7_1, BrMCM7_2 and their co-regulating genes were upregulated during replication stress. During cold stress, BoMCM6 in B. oleracea and BrMCM5 in B. rapa were remarkably upregulated. During salt stress, BoMCM6_2, BoMCM7_1, BoMCM8, BoMCM9, and BoMCM10 were markedly upregulated in B. oleracea. Hence, our study identified the candidate MCM family genes those possess abiotic stress-responsive behavior and DNA replication stress tolerance. As the first genome-wide analysis of MCM genes in B. oleracea and B. rapa, this work provides a foundation to develop stress responsive plants. Further functional and molecular studies on MCM genes will be helpful to enhance stress tolerance in plants.


Israel Journal of Plant Sciences | 2016

Expression profiling and characterization of cold, freezing-related genes from Brassica rapa cultivars

Senthil Kumar Thamilarasan; Jong-In Park; Hee-Jeong Jung; Mi-Young Chung; Yong-Gu Cho; Ill-Sup Nou

Brassica is a very important vegetable group worldwide. Cold and freezing stress are the major environmental factors that limit the productivity of Brassica. In this study, we retrieved 903 stress-chilled unigenes and the unique transcripts were classified functionally using gene ontology (GO) hierarchy, Kyoto Encyclopedia of Genes and Genomes (KEGG). KEGG orthology and structural domain data were obtained from the biological database to the unigene data set. Unigene data sets provide a wide outlook of functional characterization of Brassica rapa. In silico analysis revealed 94.2% of unigenes to be well annotated toward Reeds one-dimensional concept. On the basis of similarity searches and GO annotation of biological process (BP), 139, 113, and 57 sequences showed a response to stress (SR), abiotic stimulus (AS), and biotic stimulus (BS), respectively. To validate this observation, seven unigenes were randomly selected from AS that are known to be associated with cold stress from previous studies in other...

Collaboration


Dive into the Senthil Kumar Thamilarasan's collaboration.

Top Co-Authors

Avatar

Ill-Sup Nou

Sunchon National University

View shared research outputs
Top Co-Authors

Avatar

Jong-In Park

Sunchon National University

View shared research outputs
Top Co-Authors

Avatar

Mi-Young Chung

Sunchon National University

View shared research outputs
Top Co-Authors

Avatar

Hee-Jeong Jung

Sunchon National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashokraj Shanmugam

Sunchon National University

View shared research outputs
Top Co-Authors

Avatar

Kiwoung Yang

Sunchon National University

View shared research outputs
Top Co-Authors

Avatar

Hoy-Taek Kim

Sunchon National University

View shared research outputs
Top Co-Authors

Avatar

Nasar Uddin Ahmed

Sunchon National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge