Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seockmo Ku is active.

Publication


Featured researches published by Seockmo Ku.


Biotechnology Progress | 2015

Accelerating Sample Preparation Through Enzyme-Assisted Microfiltration of Salmonella in Chicken Extract

Hunter B. Vibbert; Seockmo Ku; Xuan Li; Xingya Liu; Eduardo Ximenes; Thomas Kreke; Michael R. Ladisch; Amanda J. Deering; Andrew G. Gehring

Microfiltration of chicken extracts has the potential to significantly decrease the time required to detect Salmonella, as long as the extract can be efficiently filtered and the pathogenic microorganisms kept in a viable state during this process. We present conditions that enable microfiltration by adding endopeptidase from Bacillus amyloliquefaciens to chicken extracts or chicken rinse, prior to microfiltration with fluid flow on both retentate and permeate sides of 0.2 μm cutoff polysulfone and polyethersulfone hollow fiber membranes. After treatment with this protease, the distribution of micron, submicron, and nanometer particles in chicken extracts changes so that the size of the remaining particles corresponds to 0.4–1 μm. Together with alteration of dissolved proteins, this change helps to explain how membrane fouling might be minimized because the potential foulants are significantly smaller or larger than the membrane pore size. At the same time, we found that the presence of protein protects Salmonella from protease action, thus maintaining cell viability. Concentration and recovery of 1–10 CFU Salmonella/mL from 400 mL chicken rinse is possible in less than 4 h, with the microfiltration step requiring less than 25 min at fluxes of 0.028–0.32 mL/cm2 min. The entire procedure—from sample processing to detection by polymerase chain reaction—is completed in 8 h.


Journal of Microbiology and Biotechnology | 2016

Whole-Cell Biocatalysis for Producing Ginsenoside Rd from Rb1 Using Lactobacillus rhamnosus GG.

Seockmo Ku; Hyun Ju You; Myeong Soo Park; Geun Eog Ji

Ginsenosides are the major active ingredients in ginseng used for human therapeutic plant medicines. One of the most well-known probiotic bacteria among the various strains on the functional food market is Lactobacillus rhamnosus GG. Biocatalytic methods using probiotic enzymes for producing deglycosylated ginsenosides such as Rd have a growing significance in the functional food industry. The addition of 2% cellobiose (w/v) to glucose-free de Man-Rogosa-Sharpe broths notably induced β-glucosidase production from L. rhamnosus GG. Enzyme production and activity were optimized at a pH, temperature, and cellobiose concentration of 6.0, 40°C, and 2% (w/v), respectively. Under these controlled conditions, β-glucosidase production in L. rhamnosus GG was enhanced by 25-fold. Additionally, whole-cell homogenates showed the highest β-glucosidase activity when compared with disrupted cell suspensions; the cell disruption step significantly decreased the β-glucosidase activity. Based on the optimized enzyme conditions, whole-cell L. rhamnosus GG was successfully used to convert ginsenoside Rb1 into Rd.


International Journal of Molecular Sciences | 2016

Review on Bifidobacterium bifidum BGN4: Functionality and Nutraceutical Applications as a Probiotic Microorganism

Seockmo Ku; Myeong Soo Park; Geun Eog Ji; Hyun Ju You

Bifidobacterium bifidum BGN4 is a probiotic strain that has been used as a major ingredient to produce nutraceutical products and as a dairy starter since 2000. The various bio-functional effects and potential for industrial application of B. bifidum BGN4 has been characterized and proven by in vitro (i.e., phytochemical bio-catalysis, cell adhesion and anti-carcinogenic effects on cell lines, and immunomodulatory effects on immune cells), in vivo (i.e., suppressed allergic responses in mouse model and anti-inflammatory bowel disease), and clinical studies (eczema in infants and adults with irritable bowel syndrome). Recently, the investigation of the genome sequencing was finished and this data potentially clarifies the biochemical characteristics of B. bifidum BGN4 that possibly illustrate its nutraceutical functionality. However, further systematic research should be continued to gain insight for academic and industrial applications so that the use of B. bifidum BGN4 could be expanded to result in greater benefit. This review deals with multiple studies on B. bifidum BGN4 to offer a greater understanding as a probiotic microorganism available in functional food ingredients. In particular, this work considers the potential for commercial application, physiological characterization and exploitation of B. bifidum BGN4 as a whole.


Molecules | 2016

Finding and Producing Probiotic Glycosylases for the Biocatalysis of Ginsenosides: A Mini Review

Seockmo Ku

Various microorganisms have been widely applied in nutraceutical industries for the processing of phytochemical conversion. Specifically, in the Asian food industry and academia, notable attention is paid to the biocatalytic process of ginsenosides (ginseng saponins) using probiotic bacteria that produce high levels of glycosyl-hydrolases. Multiple groups have conducted experiments in order to determine the best conditions to produce more active and stable enzymes, which can be applicable to produce diverse types of ginsenosides for commercial applications. In this sense, there are various reviews that cover the biofunctional effects of multiple types of ginsenosides and the pathways of ginsenoside deglycosylation. However, little work has been published on the production methods of probiotic enzymes, which is a critical component of ginsenoside processing. This review aims to investigate current preparation methods, results on the discovery of new glycosylases, the application potential of probiotic enzymes and their use for biocatalysis of ginsenosides in the nutraceutical industry.


Nutrients | 2017

The Efficacy of Bifidobacterium longum BORI and Lactobacillus acidophilus AD031 Probiotic Treatment in Infants with Rotavirus Infection

Myeong Soo Park; Bin Kwon; Seockmo Ku; Geun Eog Ji

A total of 57 infants hospitalized with rotavirus disease were included in this study. The children were randomly divided into the study’s two treatment groups: three days of the oral administration of (i) a probiotics formula containing both Bifidobacterium longum BORI and Lactobacillus acidophilus AD031 (N = 28); or (ii) a placebo (probiotic-free skim milk, N = 29) and the standard therapy for diarrhea. There were no differences in age, sex, or blood characteristics between the two groups. When the 57 cases completed the protocol, the duration of the patients’ diarrhea was significantly shorter in the probiotics group (4.38 ± 1.29, N = 28) than the placebo group (5.61 ± 1.23, N = 29), with a p-value of 0.001. Symptoms such as duration of fever (p = 0.119), frequency of diarrhea (p = 0.119), and frequency of vomiting (p = 0.331) tended to be ameliorated by the probiotic treatment; however, differences were not statistically significant between the two groups. There were no serious, adverse events and no differences in the frequency of adverse events in both groups.


International Journal of Molecular Sciences | 2017

Current Technical Approaches for the Early Detection of Foodborne Pathogens: Challenges and Opportunities

Il-Hoon Cho; Seockmo Ku

The development of novel and high-tech solutions for rapid, accurate, and non-laborious microbial detection methods is imperative to improve the global food supply. Such solutions have begun to address the need for microbial detection that is faster and more sensitive than existing methodologies (e.g., classic culture enrichment methods). Multiple reviews report the technical functions and structures of conventional microbial detection tools. These tools, used to detect pathogens in food and food homogenates, were designed via qualitative analysis methods. The inherent disadvantage of these analytical methods is the necessity for specimen preparation, which is a time-consuming process. While some literature describes the challenges and opportunities to overcome the technical issues related to food industry legal guidelines, there is a lack of reviews of the current trials to overcome technological limitations related to sample preparation and microbial detection via nano and micro technologies. In this review, we primarily explore current analytical technologies, including metallic and magnetic nanomaterials, optics, electrochemistry, and spectroscopy. These techniques rely on the early detection of pathogens via enhanced analytical sensitivity and specificity. In order to introduce the potential combination and comparative analysis of various advanced methods, we also reference a novel sample preparation protocol that uses microbial concentration and recovery technologies. This technology has the potential to expedite the pre-enrichment step that precedes the detection process.


Biotechnology and Bioengineering | 2017

Human pathogens in plant biofilms: Formation, physiology, and detection†

Eduardo Ximenes; Lori Hoagland; Seockmo Ku; Xuan Li; Michael R. Ladisch

Fresh produce, viewed as an essential part of a healthy life style is usually consumed in the form of raw or minimally processed fruits and vegetables, and is a potentially important source of food‐borne human pathogenic bacteria and viruses. These are passed on to the consumer since the bacteria can form biofilms or otherwise populate plant tissues, thereby using plants as vectors to infect animal hosts. The life cycle of the bacteria in plants differs from those in animals or humans and results in altered physiochemical and biological properties (e.g., physiology, immunity, native microflora, physical barriers, mobility, and temperature). Mechanisms by which healthy plants may become contaminated by microorganisms, develop biofilms, and then pass on their pathogenic burden to people are explored in the context of hollow fiber microfiltration by which plant‐derived microorganisms may be recovered and rapidly concentrated to facilitate study of their properties. Enzymes, when added to macerated plant tissues, hydrolyze or alter macromolecules that would otherwise foul hollow‐fiber microfiltration membranes. Hence, microfiltration may be used to quickly increase the concentration of microorganisms to detectable levels. This review discusses microbial colonization of vegetables, formation and properties of biofilms, and how hollow fiber microfiltration may be used to concentrate microbial targets to detectable levels. The use of added enzymes helps to disintegrate biofilms and minimize hollow fiber membrane fouling, thereby providing a new tool for more time effectively elucidating mechanisms by which biofilms develop and plant tissue becomes contaminated with human pathogens. Biotechnol. Bioeng. 2017;114: 1403–1418.


Biotechnology Progress | 2016

Microfiltration of enzyme treated egg whites for accelerated detection of viable Salmonella.

Seockmo Ku; Eduardo Ximenes; Thomas Kreke; Kirk S. Foster; Amanda J. Deering; Michael R. Ladisch

We report detection of <13 CFU of Salmonella per 25 g egg white within 7 h by concentrating the bacteria using microfiltration through 0.2‐μm cutoff polyethersulfone hollow fiber membranes. A combination of enzyme treatment, controlled cross‐flow on both sides of the hollow fibers, and media selection were key to controlling membrane fouling so that rapid concentration and the subsequent detection of low numbers of microbial cells were achieved. We leveraged the protective effect of egg white proteins and peptone so that the proteolytic enzymes did not attack the living cells while hydrolyzing the egg white proteins responsible for fouling. The molecular weight of egg white proteins was reduced from about 70 kDa to 15 kDa during hydrolysis. This enabled a 50‐fold concentration of the cells when a volume of 525 mL of peptone and egg white, containing 13 CFU of Salmonella, was decreased to a 10 mL volume in 50 min. A 10‐min microcentrifugation step further concentrated the viable Salmonella cells by 10×. The final cell recovery exceeded 100%, indicating that microbial growth occurred during the 3‐h processing time. The experiments leading to rapid concentration, recovery, and detection provided further insights on the nature of membrane fouling enabling fouling effects to be mitigated. Unlike most membrane processes where protein recovery is the goal, recovery of viable microorganisms for pathogen detection is the key measure of success, with modification of cell‐free proteins being both acceptable and required to achieve rapid microfiltration of viable microorganisms.


Biotechnology Progress | 2017

Protein particulate retention and microorganism recovery for rapid detection of Salmonella

Seockmo Ku; Thomas Kreke; Eduardo Ximenes; Kirk S. Foster; Xingya Liu; Christopher J. Gilpin; Michael R. Ladisch

The rapid detection of Salmonella in ground meat requires that living microorganisms be brought to levels detectable by PCR, immunoassays, or similar techniques within 8 h. Previously, we employed microfiltration using hollow fiber membranes to rapidly process and concentrate viable bacteria in food extracts through a combination of enzyme treatment and prefiltration in order to prevent blockage or fouling of the hollow fiber membranes. However, scanning electron microscopy and particle size analysis of enzyme hydrolysates showed that enzyme treatment followed by filtration caused submicron particles to form and be trapped within the prefiltration media, which in turn, retained about 80% of the bacteria. Filtering prior to enzyme treatment resulted in formation of a filter cake consisting of protein particles retained on the surface of the filter, while facilitating passage of the much smaller microorganisms through the filter, separating them from particulates. Subsequent enzyme treatment of the filtrate resulted in an extract that was microfiltered in less than an hour, while concentrating viable microorganisms in the extract by 500×. An inoculum of Salmonella enterica cells into turkey burger containing of 1–20 CFU/mL, consisting of spiked cells plus cells already present in the turkey burger sample, was rapidly brought to levels detectable by conventional PCR and BAX® PCR assays. The entire procedure from sample processing to detection of Salmonella enterica was achieved in less than 8 h.


Sensors | 2018

Current Technologies of Electrochemical Immunosensors: Perspective on Signal Amplification

Il Hoon Cho; Jongsung Lee; Jiyeon Kim; Min Soo Kang; Jean Kyung Paik; Seockmo Ku; Hyun Mo Cho; Joseph Irudayaraj; Dong Hyung Kim

An electrochemical immunosensor employs antibodies as capture and detection means to produce electrical charges for the quantitative analysis of target molecules. This sensor type can be utilized as a miniaturized device for the detection of point-of-care testing (POCT). Achieving high-performance analysis regarding sensitivity has been one of the key issues with developing this type of biosensor system. Many modern nanotechnology efforts allowed for the development of innovative electrochemical biosensors with high sensitivity by employing various nanomaterials that facilitate the electron transfer and carrying capacity of signal tracers in combination with surface modification and bioconjugation techniques. In this review, we introduce novel nanomaterials (e.g., carbon nanotube, graphene, indium tin oxide, nanowire and metallic nanoparticles) in order to construct a high-performance electrode. Also, we describe how to increase the number of signal tracers by employing nanomaterials as carriers and making the polymeric enzyme complex associated with redox cycling for signal amplification. The pros and cons of each method are considered throughout this review. We expect that these reviewed strategies for signal enhancement will be applied to the next versions of lateral-flow paper chromatography and microfluidic immunosensor, which are considered the most practical POCT biosensor platforms.

Collaboration


Dive into the Seockmo Ku's collaboration.

Top Co-Authors

Avatar

Geun Eog Ji

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyun Ju You

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge