Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seong Hoon Park is active.

Publication


Featured researches published by Seong Hoon Park.


Cancer Cell | 2010

SIRT3 Is a Mitochondria-Localized Tumor Suppressor Required for Maintenance of Mitochondrial Integrity and Metabolism during Stress

Hyun-Seok Kim; Krish Patel; Kristi Muldoon-Jacobs; Kheem S. Bisht; Nukhet Aykin-Burns; J. Daniel Pennington; Riet van der Meer; Phuongmai Nguyen; Jason E. Savage; Kjerstin M. Owens; Athanassios Vassilopoulos; Ozkan Ozden; Seong Hoon Park; Keshav K. Singh; Sarki A. Abdulkadir; Douglas R. Spitz; Chu-Xia Deng; David Gius

The sirtuin gene family (SIRT) is hypothesized to regulate the aging process and play a role in cellular repair. This work demonstrates that SIRT3(-/-) mouse embryonic fibroblasts (MEFs) exhibit abnormal mitochondrial physiology as well as increases in stress-induced superoxide levels and genomic instability. Expression of a single oncogene (Myc or Ras) in SIRT3(-/-) MEFs results in in vitro transformation and altered intracellular metabolism. Superoxide dismutase prevents transformation by a single oncogene in SIRT3(-/-) MEFs and reverses the tumor-permissive phenotype as well as stress-induced genomic instability. In addition, SIRT3(-/-) mice develop ER/PR-positive mammary tumors. Finally, human breast and other human cancer specimens exhibit reduced SIRT3 levels. These results identify SIRT3 as a genomically expressed, mitochondria-localized tumor suppressor.


Molecular Cell | 2010

Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress.

Randa Tao; Mitchell C. Coleman; J. Daniel Pennington; Ozkan Ozden; Seong Hoon Park; Haiyan Jiang; Hyun-Seok Kim; Charles R. Flynn; Salisha Hill; W. Hayes McDonald; Alicia K. Olivier; Douglas R. Spitz; David Gius

Genetic deletion of the mitochondrial deacetylase sirtuin-3 (Sirt3) results in increased mitochondrial superoxide, a tumor-permissive environment, and mammary tumor development. MnSOD contains a nutrient- and ionizing radiation (IR)-dependent reversible acetyl-lysine that is hyperacetylated in Sirt3⁻/⁻ livers at 3 months of age. Livers of Sirt3⁻/⁻ mice exhibit decreased MnSOD activity, but not immunoreactive protein, relative to wild-type livers. Reintroduction of wild-type but not deacetylation null Sirt3 into Sirt3⁻/⁻ MEFs deacetylated lysine and restored MnSOD activity. Site-directed mutagenesis of MnSOD lysine 122 to an arginine, mimicking deacetylation (lenti-MnSOD(K122-R)), increased MnSOD activity when expressed in MnSOD⁻/⁻ MEFs, suggesting acetylation directly regulates function. Furthermore, infection of Sirt3⁻/⁻ MEFs with lenti-MnSOD(K122-R) inhibited in vitro immortalization by an oncogene (Ras), inhibited IR-induced genomic instability, and decreased mitochondrial superoxide. Finally, IR was unable to induce MnSOD deacetylation or activity in Sirt3⁻/⁻ livers, and these irradiated livers displayed significant IR-induced cell damage and microvacuolization in their hepatocytes.


Cancer Cell | 2011

SIRT2 Maintains Genome Integrity and Suppresses Tumorigenesis through Regulating APC/C Activity

Hyun-Seok Kim; Athanassios Vassilopoulos; Rui Hong Wang; Tyler Lahusen; Zhen Xiao; Xiaoling Xu; Cuiling Li; Timothy D. Veenstra; Bing Li; Hongtao Yu; Junfang Ji; Xin Wei Wang; Seong Hoon Park; Yong I. Cha; David Gius; Chu-Xia Deng

Members of sirtuin family regulate multiple critical biological processes, yet their role in carcinogenesis remains controversial. To investigate the physiological functions of SIRT2 in development and tumorigenesis, we disrupted Sirt2 in mice. We demonstrated that SIRT2 regulates the anaphase-promoting complex/cyclosome activity through deacetylation of its coactivators, APC(CDH1) and CDC20. SIRT2 deficiency caused increased levels of mitotic regulators, including Aurora-A and -B that direct centrosome amplification, aneuploidy, and mitotic cell death. Sirt2-deficient mice develop gender-specific tumorigenesis, with females primarily developing mammary tumors, and males developing more hepatocellular carcinoma (HCC). Human breast cancers and HCC samples exhibited reduced SIRT2 levels compared with normal tissues. These data demonstrate that SIRT2 is a tumor suppressor through its role in regulating mitosis and genome integrity.


Free Radical Biology and Medicine | 2014

SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells.

Ozkan Ozden; Seong Hoon Park; Brett A. Wagner; Ha Yong Song; Yueming Zhu; Athanassios Vassilopoulos; Barbara Jung; Garry R. Buettner; David Gius

Pyruvate dehydrogenase E1α (PDHA1) is the first component enzyme of the pyruvate dehydrogenase (PDH) complex that transforms pyruvate, via pyruvate decarboxylation, into acetyl-CoA that is subsequently used by both the citric acid cycle and oxidative phosphorylation to generate ATP. As such, PDH links glycolysis and oxidative phosphorylation in normal as well as cancer cells. Herein we report that SIRT3 interacts with PDHA1 and directs its enzymatic activity via changes in protein acetylation. SIRT3 deacetylates PDHA1 lysine 321 (K321), and a PDHA1 mutant mimicking a deacetylated lysine (PDHA1(K321R)) increases PDH activity, compared to the K321 acetylation mimic (PDHA1(K321Q)) or wild-type PDHA1. Finally, PDHA1(K321Q) exhibited a more transformed in vitro cellular phenotype compared to PDHA1(K321R). These results suggest that the acetylation of PDHA1 provides another layer of enzymatic regulation, in addition to phosphorylation, involving a reversible acetyllysine, suggesting that the acetylome, as well as the kinome, links glycolysis to respiration.


International Journal of Molecular Sciences | 2011

Sirt3, mitochondrial ROS, ageing, and carcinogenesis.

Seong Hoon Park; Ozkan Ozden; Haiyan Jiang; Yong I. Cha; J. Daniel Pennington; Nukhet Aykin-Burns; Douglas R. Spitz; David Gius; Hyun-Seok Kim

One fundamental observation in cancer etiology is that the rate of malignancies in any mammalian population increases exponentially as a function of age, suggesting a mechanistic link between the cellular processes governing longevity and carcinogenesis. In addition, it is well established that aberrations in mitochondrial metabolism, as measured by increased reactive oxygen species (ROS), are observed in both aging and cancer. In this regard, genes that impact upon longevity have recently been characterized in S. cerevisiae and C. elegans, and the human homologs include the Sirtuin family of protein deacetylases. Interestingly, three of the seven sirtuin proteins are localized into the mitochondria suggesting a connection between the mitochondrial sirtuins, the free radical theory of aging, and carcinogenesis. Based on these results it has been hypothesized that Sirt3 functions as a mitochondrial fidelity protein whose function governs both aging and carcinogenesis by modulating ROS metabolism. Sirt3 has also now been identified as a genomically expressed, mitochondrial localized tumor suppressor and this review will outline potential relationships between mitochondrial ROS/superoxide levels, aging, and cell phenotypes permissive for estrogen and progesterone receptor positive breast carcinogenesis.


Translational cancer research | 2012

SIRT2 is a tumor suppressor that connects aging, acetylome, cell cycle signaling, and carcinogenesis

Seong Hoon Park; Yuming Zhu; Ozkan Ozden; Hyun-Seok Kim; Haiyan Jiang; Chu-Xia Deng; David Gius; Athanassios Vassilopoulos

One long standing observation in clinical oncology is that age increase is the single most statistically significant factor/variable that predicts for the incidence of solid tumors. This observation suggests that the cellular and molecular processes and mechanisms that direct an organisms life span may be used to determine the clinical connection between aging and carcinogenesis. In this regard, the genes that impact upon longevity have been characterized in S. cerevisiae and C. elegans, and the human homologs include the Sirtuin family of protein deacetylases. We have recently shown that the primary cytoplasmic sirtuin, Sirt2 appears to meet the criteria as a legitimate tumor suppressor protein. Mice genetically altered to delete Sirt2 develop gender-specific tumorigenesis, with females primarily developing mammary tumors, and males developing multiple different types of gastrointestinal malignancies. Furthermore human tumors, as compared to normal samples, displayed significant decreases in SIRT2 levels suggesting that SIRT2 may also be a human tumor suppressor.


Proceedings of the National Academy of Sciences of the United States of America | 2013

SIRT2 directs the replication stress response through CDK9 deacetylation

Hui Zhang; Seong Hoon Park; Brooke G. Pantazides; Oleksandra Karpiuk; Matthew D. Warren; Claire W. Hardy; Duc M. Duong; So Jeong Park; Hyun-Seok Kim; Athanassios Vassilopoulos; Nicholas T. Seyfried; Steven A. Johnsen; David Gius; David S. Yu

Sirtuin 2 (SIRT2) is a sirtuin family deacetylase that directs acetylome signaling, protects genome integrity, and is a murine tumor suppressor. We show that SIRT2 directs replication stress responses by regulating the activity of cyclin-dependent kinase 9 (CDK9), a protein required for recovery from replication arrest. SIRT2 deficiency results in replication stress sensitivity, impairment in recovery from replication arrest, spontaneous accumulation of replication protein A to foci and chromatin, and a G2/M checkpoint deficit. SIRT2 interacts with and deacetylates CDK9 at lysine 48 in response to replication stress in a manner that is partially dependent on ataxia telangiectasia and Rad3 related (ATR) but not cyclin T or K, thereby stimulating CDK9 kinase activity and promoting recovery from replication arrest. Moreover, wild-type, but not acetylated CDK9, alleviates the replication stress response impairment of SIRT2 deficiency. Collectively, our results define a function for SIRT2 in regulating checkpoint pathways that respond to replication stress through deacetylation of CDK9, providing insight into how SIRT2 maintains genome integrity and a unique mechanism by which SIRT2 may function, at least in part, as a tumor suppressor protein.


Cancer Research | 2016

SIRT2-Mediated Deacetylation and Tetramerization of Pyruvate Kinase Directs Glycolysis and Tumor Growth

Seong Hoon Park; Ozkan Ozden; Guoxiang Liu; Ha Yong Song; Yueming Zhu; Yufan Yan; Xianghui Zou; Hong Jun Kang; Haiyan Jiang; Daniel R. Principe; Meejeon Roh; Athanassios Vassilopoulos; David Gius

Sirtuins participate in sensing nutrient availability and directing metabolic activity to match energy needs with energy production and consumption. However, the pivotal targets for sirtuins in cancer are mainly unknown. In this study, we identify the M2 isoform of pyruvate kinase (PKM2) as a critical target of the sirtuin SIRT2 implicated in cancer. PKM2 directs the synthesis of pyruvate and acetyl-CoA, the latter of which is transported to mitochondria for use in the Krebs cycle to generate ATP. Enabled by a shotgun mass spectrometry analysis founded on tissue culture models, we identified a candidate SIRT2 deacetylation target at PKM2 lysine 305 (K305). Biochemical experiments including site-directed mutants that mimicked constitutive acetylation suggested that acetylation reduced PKM2 activity by preventing tetramerization to the active enzymatic form. Notably, ectopic overexpression of a deacetylated PKM2 mutant in Sirt2-deficient mammary tumor cells altered glucose metabolism and inhibited malignant growth. Taken together, our results argued that loss of SIRT2 function in cancer cells reprograms their glycolytic metabolism via PKM2 regulation, partially explaining the tumor-permissive phenotype of mice lacking Sirt2 Cancer Res; 76(13); 3802-12. ©2016 AACR.


Antioxidants & Redox Signaling | 2017

Loss of NAD-Dependent Protein Deacetylase Sirtuin-2 Alters Mitochondrial Protein Acetylation and Dysregulates Mitophagy.

Guoxiang Liu; Seong Hoon Park; Marta Imbesi; William Joseph Nathan; Xianghui Zou; Yueming Zhu; Haiyan Jiang; Loukia Parisiadou; David Gius

AIMS Sirtuins connect energy generation and metabolic stress to the cellular acetylome. Currently, only the mitochondrial sirtuins (SIRT3-5) and SIRT1 have been shown to direct mitochondrial function; however, Aims: NAD-dependent protein deacetylase sirtuin-2 (SIRT2), the primary cytoplasmic sirtuin, is not yet reported to associate with mitochondria. RESULTS This study revealed a novel physiological function of SIRT2: the regulation of mitochondrial function. First, the acetylation of several metabolic mitochondrial proteins was found to be altered in Sirt2-deficient mice, which was, subsequently, validated by immunoprecipitation experiments in which the acetylated mitochondrial proteins directly interacted with SIRT2. Moreover, immuno-gold electron microscopic images of mouse brains showed that SIRT2 associates with the inner mitochondrial membrane in central nervous system cells. The loss of Sirt2 increased oxidative stress, decreased adenosine triphosphate levels, and altered mitochondrial morphology at the cellular and tissue (i.e., brain) level. Furthermore, the autophagic/mitophagic processes were dysregulated in Sirt2-deficient neurons and mouse embryonic fibroblasts. INNOVATION For the first time it is shown that SIRT2 directs mitochondrial metabolism. CONCLUSION Together, these findings support that SIRT2 functions as a mitochondrial sirtuin, as well as a regulator of autophagy/mitophagy to maintain mitochondrial biology, thus facilitating cell survival. Antioxid. Redox Signal. 26, 849-863.


Journal of Clinical Investigation | 2017

Sirtuin 2 regulates cellular iron homeostasis via deacetylation of transcription factor NRF2

Xiaoyan Yang; Seong Hoon Park; Hsiang Chun Chang; Jason S. Shapiro; Athanassios Vassilopoulos; Konrad T. Sawicki; Chunlei Chen; Meng Shang; Paul W. Burridge; Conrad L. Epting; Lisa D. Wilsbacher; Supak Jenkitkasemwong; Mitchell D. Knutson; David Gius; Hossein Ardehali

SIRT2 is a cytoplasmic sirtuin that plays a role in various cellular processes, including tumorigenesis, metabolism, and inflammation. Since these processes require iron, we hypothesized that SIRT2 directly regulates cellular iron homeostasis. Here, we have demonstrated that SIRT2 depletion results in a decrease in cellular iron levels both in vitro and in vivo. Mechanistically, we determined that SIRT2 maintains cellular iron levels by binding to and deacetylating nuclear factor erythroid-derived 2–related factor 2 (NRF2) on lysines 506 and 508, leading to a reduction in total and nuclear NRF2 levels. The reduction in nuclear NRF2 leads to reduced ferroportin 1 (FPN1) expression, which in turn results in decreased cellular iron export. Finally, we observed that Sirt2 deletion reduced cell viability in response to iron deficiency. Moreover, livers from Sirt2–/– mice had decreased iron levels, while this effect was reversed in Sirt2–/– Nrf2–/– double-KO mice. Taken together, our results uncover a link between sirtuin proteins and direct control over cellular iron homeostasis via regulation of NRF2 deacetylation and stability.

Collaboration


Dive into the Seong Hoon Park's collaboration.

Top Co-Authors

Avatar

David Gius

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Ozkan Ozden

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haiyan Jiang

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Hyun-Seok Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yueming Zhu

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Ha Yong Song

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Barbara Jung

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge