Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seong Kwang Lim is active.

Publication


Featured researches published by Seong Kwang Lim.


Journal of Toxicology and Environmental Health-part B-critical Reviews | 2013

Safety Evaluation And Risk Assessment Of d-Limonene

Young Woo Kim; Min Ji Kim; Bu Young Chung; Du Yeon Bang; Seong Kwang Lim; Seul Min Choi; Duck Soo Lim; M. C. Cho; Kyungsil Yoon; Hyung Sik Kim; Kyu Bong Kim; You Sun Kim; Seung Jun Kwack; Byung-Mu Lee

d-Limonene, a major constituent of citrus oils, is a monoterpene widely used as a flavor/fragrance additive in cosmetics, foods, and industrial solvents as it possesses a pleasant lemon-like odor. d-Limonene has been designated as a chemical with low toxicity based upon lethal dose (LD50) and repeated-dose toxicity studies when administered orally to animals. However, skin irritation or sensitizing potential was reported following widespread use of this agent in various consumer products. In experimental animals and humans, oxidation products or metabolites of d-limonene were shown to act as skin irritants. Carcinogenic effects have also been observed in male rats, but the mode of action (MOA) is considered irrelevant for humans as the protein α2u-globulin responsible for this effect in rodents is absent in humans. Thus, the liver was identified as a critical target organ following oral administration of d-limonene. Other than the adverse dermal effects noted in humans, other notable toxic effects of d-limonene have not been reported. The reference dose (RfD), the no-observed-adverse-effect level (NOAEL), and the systemic exposure dose (SED) were determined and found to be 2.5 mg/kg/d, 250 mg/kg//d, and 1.48 mg/kg/d, respectively. Consequently, the margin of exposure (MOE = NOAEL/SED) of 169 was derived based upon the data, and the hazard index (HI = SED/RfD) for d-limonene is 0.592. Taking into consideration conservative estimation, d-limonene appears to exert no serious risk for human exposure. Based on adverse effects and risk assessments, d-limonene may be regarded as a safe ingredient. However, the potential occurrence of skin irritation necessitates regulation of this chemical as an ingredient in cosmetics. In conclusion, the use of d-limonene in cosmetics is safe under the current regulatory guidelines for cosmetics.


Journal of Toxicology and Environmental Health | 2014

Risk Assessment of Volatile Organic Compounds Benzene, Toluene, Ethylbenzene, and Xylene (BTEX) in Consumer Products

Seong Kwang Lim; Han Seung Shin; Kyung Sil Yoon; Seung Jun Kwack; Yoon Mi Um; Ji Hyeon Hyeon; Hyo Min Kwak; Ji Yun Kim; Tae Hyung Kim; Yeon Joo Kim; Tae Hyun Roh; Duck Soo Lim; Min-kyung Shin; Seul Min Choi; Hyung Sik Kim; Byung-Mu Lee

Exposure and risk assessment was performed by evaluating levels of volatile organic compounds (VOC) benzene, toluene, ethylbenzene, and xylene (BTEX) in 207 consumer products. The products were categorized into 30 different items, consisting of products of different brands. Samples were analyzed for BTEX by headspace-gas chromatography/mass spectrometry (headspace-GC/MS) with limit of detection (LOD) of 1 ppm. BTEX were detected in 59 consumer products from 18 item types. Benzene was detected in whiteout (ranging from not detected [ND] to 3170 ppm), glue (1486 ppm), oil-based ballpoint pens (47 ppm), and permanent (marking) pens (2 ppm). Toluene was detected in a leather cleaning product (6071 ppm), glue (5078 ppm), whiteout (1130 ppm), self-adhesive wallpaper (15–1012 ppm), shoe polish (806 ppm), permanent pen (609 ppm), wig adhesive (372 ppm), tapes (2–360 ppm), oil-based ballpoint pen (201 ppm), duplex wallpaper (12–52 ppm), shoes (27 ppm), and air freshener (13 ppm). High levels of ethylbenzene were detected in permanent pen (ND–345,065 ppm), shoe polish (ND–277,928 ppm), leather cleaner (42,223 ppm), whiteout (ND–2,770 ppm), and glue (ND–792 ppm). Xylene was detected in permanent pen (ND–285,132 ppm), shoe polish (ND–87,298 ppm), leather cleaner (12,266 ppm), glue (ND–3,124 ppm), and whiteout (ND–1,400 ppm). Exposure assessment showed that the exposure to ethylbenzene from permanent pens ranged from 0 to 3.11 mg/kg/d (men) and 0 to 3.75 mg/kg/d (women), while for xylene, the exposure ranges were 0–2.57 mg/kg/d and 0–3.1 mg/kg/d in men and women, respectively. The exposure of women to benzene from whiteout ranged from 0 to 0.00059 mg/kg/d. Hazard index (HI), defined as a ratio of exposure to reference dose (RfD), for ethylbenzene was 31.1 (3.11 mg/kg/d/0.1 mg/kg/d) and for xylene (2.57 mg/kg/d/0.2 mg/kg/d) was 12.85, exceeding 1 for both compounds. Cancer risk for benzene was calculated to be 3.2 × 10−5 based on (0.00059 mg/kg/d × 0.055 mg/kg-d−1, cancer potency factor), assuming that 100% of detected levels in some products such as permanent pens and whiteouts were exposed in a worst-case scenario. These data suggest that exposure to VOC via some consumer products exceeded the safe limits and needs to be reduced.


Toxicology Letters | 2012

Chemopreventive mechanisms of methionine on inhibition of benzo(a)pyrene-DNA adducts formation in human hepatocellular carcinoma HepG2 cells.

Taehyun Roh; Min Young Kwak; Eun Hwa Kwak; Dong Hyun Kim; E.Y. Han; J.Y. Bae; Du Yeon Bang; Duck Soo Lim; I.Y. Ahn; Dong Eun Jang; Seong Kwang Lim; Sun Dong Yoo; Seung Jun Kwack; Kiu Lea Park; Young Ju Lee; Kyu-Bong Kim; Jaewon Lee; Hyung Sik Kim; Byung Mu Lee

This study was designed to investigate the molecular mechanism underlying the chemopreventive effects of methionine on benzo[a]pyrene (B[a]P)-DNA adducts formation in HepG2 cells. Methionine significantly inhibited B[a]P-DNA adduct formation in HepG2 cells. Methionine significantly decreased the cellular uptake of [(3)H] B[a]P, but increased the cellular discharge of [(3)H] B[a]P from HepG2 cells into the media. B[a]P significantly lowered total cellular glutathione (GSH) level, but co-cultured with B[a]P and methionine, gradually attenuated intracellular GSH levels in a concentration-dependent manner, which was markedly higher at 20-500μM methionine. The cellular proteins of treated cells were resolved by 2D-polyacrylamide gel electrophoresis. Proteomic profiles showed that phase II enzymes such as glutathione S-transferase (GST) omega-1, GSTM3, glyoxalase I (GLO1) and superoxide dismutase (SOD) were down-regulated by B[a]P treatment, whereas cathepsin B (CTSB), Rho GDP-dissociation inhibitor alpha (Rho-GDP-DIA), histamine N-methyltransferase (HNMT), spermidine synthase (SRM) and arginase-1 (ARG1) were up-regulated by B[a]P. B[a]P and methionine treatments, GST omega-1, GSTM3, GLO1 and SOD were significantly enhanced compared to B[a]P alone. Similarly, methionine was effective in diminishing the B[a]P-induced up-regulation of CTSB, Rho-GDP-DIA, HNMT, SRM and ARG1. Our data suggests that methionine might exert a chemoprotective effect on B[a]P-DNA adduct formation by attenuating intracellular GSH levels, blocking the uptake of B[a]P into cells, or by altering expression of proteins involved in DNA adduct formation.


Journal of Toxicology and Environmental Health-part B-critical Reviews | 2017

Risk assessment of zinc oxide, a cosmetic ingredient used as a UV filter of sunscreens

Kyu-Bong Kim; Young Woo Kim; Seong Kwang Lim; Tae Hyun Roh; Du Yeon Bang; Seul Min Choi; Duck Soo Lim; Yeon Joo Kim; Seol-Hwa Baek; Minkook Kim; Hyo-Seon Seo; Min-Hwa Kim; Hyung Sik Kim; Joo Young Lee; Sam Kacew; Byung-Mu Lee

ABSTRACT Zinc oxide (ZnO), an inorganic compound that appears as a white powder, is used frequently as an ingredient in sunscreens. The aim of this review was to examine the toxicology and risk assessment of ZnO based upon available published data. Recent studies on acute, sub-acute, and chronic toxicities of ZnO indicated that this compound is virtually non-toxic in animal models. However, it was reported that ZnO nanoparticles (NP) (particle size, 40 nm) induced significant changes in anemia-related hematologic parameters and mild to moderate pancreatitis in male and female Sprague-Dawley rats at 536.8 mg/kg/day in a 13-week oral toxicity study. ZnO displayed no carcinogenic potential, and skin penetration is low. No-observed-adverse-effect level (NOAEL) ZnO was determined to be 268.4 mg/kg/day in a 13-week oral toxicity study, and a maximum systemic exposure dose (SED) of ZnO was estimated to be 0.6 mg/kg/day based on topical application of sunscreen containing ZnO. Subsequently, the lowest margin of safety (MOS) was estimated to be 448.2, which indicates that the use of ZnO in sunscreen is safe. A risk assessment was undertaken considering other routes of exposure (inhalation or oral) and major product types (cream, lotion, spray, and propellant). Human data revealed that MOS values (7.37 for skin exposure from cream and lotion type; 8.64 for skin exposure of spray type; 12.87 for inhalation exposure of propellant type; 3.32 for oral exposure of sunscreen) are all within the safe range (MOS > 1). Risk assessment of ZnO indicates that this compound may be used safely in cosmetic products within the current regulatory limits of 25% in Korea.


Journal of Applied Toxicology | 2012

Potential metabolomic biomarkers for evaluation of adriamycin efficacy using a urinary 1H-NMR spectroscopy.

Kyu-Bong Kim; Ji-Young Yang; Seung Jun Kwack; Hyung Sik Kim; Do Hyun Ryu; Yeon-Joo Kim; J.Y. Bae; Duck Soo Lim; Seul Min Choi; M.J. Kwon; Du Yeon Bang; Seong Kwang Lim; Young Woo Kim; Geum-Sook Hwang; Byung-Mu Lee

A metabolomics approach using proton nuclear magnetic resonance (NMR) was applied to investigate metabolic alterations following adriamycin (ADR) treatment for gastric adenocarcinoma. After BALB/c‐nu/nu mice were implanted with human gastric adenocarcinoma, ADR (1 or 3 mg kg−1 per day) was intraperitoneally administered for 5 days. Urine was collected on days 2 and 5 and analyzed by NMR. The levels of trimethylamine oxide (TMAO, ×0.3), hippurate (×0.3) and taurine (×0.6) decreased significantly (P < 0.05), whereas the levels of 3‐indoxylsulfate (×12.6), trigonelline (×1.5), citrate (×2.5), trimethylamine (TMA, ×2.0) and 2‐oxoglutarate (×2.3) increased significantly (P < 0.05) in the tumor model. After ADR treatment, TMAO, hippuarte and taurine were increased significantly on day 5 compared with those of the tumor model. The levels of 2‐oxoglutarate, 3‐indoxylsulfate, trigonelline, TMA and citrate, which increased in the tumor model, significantly decreased to those of normal control by ADR treatment. Furthermore, the ratio between TMA and TMAO was dramatically altered in both tumor and ADR‐treated groups. Overall, metabolites such as TMAO, TMA, 3‐indoxylsulfate, hippurate, trigonelline, citrate and 2‐oxoglutarate related to the tricarboxylic acid (TCA) cycle might be considered as therapeutic targets to potentiate the efficacy of ADR. Thus, these results suggest that the metabolomics analysis of tumor response to ADR treatment may be applicable for demonstrating the efficacy of anticancer agent, ADR and treatment adaptation. Copyright


Journal of Toxicology and Environmental Health | 2013

Uterotrophic and Hershberger Assays for Endocrine Disruption Properties of Plastic Food Contact Materials Polypropylene (PP) and Polyethylene Terephthalate (PET)

Bu Young Chung; Minji Kyung; Seong Kwang Lim; Seul Min Choi; Duck Soo Lim; Seung Jun Kwack; Hyung Sik Kim; Byung-Mu Lee

Plasticizers or plastic materials such as phthalates, bisphenol-A (BPA), and styrene are widely used in the plastic industry and are suspected endocrine-disrupting chemicals (EDC). Although plastic materials such as polypropylene (PP) and polyethylene terephthalate (PET) are not EDC and are considered to be safe, their potential properties as EDC have not been fully investigated. In this study, plastic samples eluted from plastic food containers (PP or PET) were investigated in Sprague-Dawley rats using Hershberger and uterotrophic assays. In the Hershberger assay, 6-wk-old castrated male rats were orally treated for 10 consecutive days with plastic effluent at 3 different doses (5 ml/kg) or vehicle control (corn oil, 1 ml/100 g) to determine the presence of both anti-androgenic and androgenic effects. Testosterone (0.4 mg/ml/kg) was subcutaneously administered for androgenic evaluation as a positive control, whereas testosterone (0.4 mg/ml/kg) and flutamide (3 mg/kg/day) were administered to a positive control group for anti-androgenic evaluation. The presence of any anti-androgenic or androgenic activities of plastic effluent was not detected. Sex accessory tissues such as ventral prostate or seminal vesicle showed no significant differences in weight between treated and control groups. For the uterotrophic assay, immature female rats were treated with plastic effluent at three different doses (5 ml/kg), with vehicle control (corn oil, 1 ml/100 g), or with ethinyl estradiol (3 μg/kg/d) for 3 d. There were no significant differences between test and control groups in vagina or uterine weight. Data suggest that effluents from plastic food containers do not appear to produce significant adverse effects according to Hershberger and uterotrophic assays.


Regulatory Toxicology and Pharmacology | 2015

Toxicological evaluation of isopropylparaben and isobutylparaben mixture in Sprague–Dawley rats following 28 days of dermal exposure

Min Ji Kim; Seung Jun Kwack; Seong Kwang Lim; Yeon Joo Kim; Tae Hyun Roh; Seul Min Choi; Hyung Sik Kim; Byung Mu Lee

The alkyl esters of p-hydroxybenzoic acid (Parabens) have been of concern due to their probable endocrine disrupting property especially in baby consumer products. The safety of parabens for use as a preservative in cosmetics has come into controversy, and thus consumer demand for paraben-free products is ever increasing. Thus, more comprehensive studies are needed to conclusively determine the safety of the multiple prolonged exposure to parabens with cosmetic ingredients. This study was conducted to investigate the potential repeated 28 days dermal toxicity (50, 100, 300, or 600 mg/kg bw/day) of isopropylparaben (IPP), isobutylparaben (IBP), or the mixture of IPP and IBP in rats. There were no significant changes in body and organ weights in any group. However, histopathological examinations showed that weak or moderate skin damages were observed in female rats by macroscopic and microscopic evaluations. In female rats, no observed adverse effect levels (NOAELs) of IPP with no skin lesion and IBP for skin hyperkeratosis, were estimated to be 600 mg/kg bw/day, and 50 mg/kg bw/day, respectively. With regard skin hyperkeratosis, the lowest observed adverse effect level (LOAEL) of the mixture of IPP and IBP was estimated to be 50 mg/kg bw/day. Analysis of six serum hormones (estrogen, testosterone, insulin, T3, TSH, or FSH) in animals showed that only FSH was dose-dependently decreased in the mixture groups of 100 mg/kg bw/day or higher. These data suggest that the mixture of IPP and IBP showed a synergistic dermal toxicity in rats and should be considered for future use in consumer products.


Journal of Toxicology and Environmental Health | 2014

A one-generation reproductive toxicity study of 3,4-methylenedioxy-n-methamphetamine (MDMA, Ecstasy), an amphetamine derivative, in C57BL/6 mice.

Seung Jun Kwack; Kyung Sik Yoon; Seong Kwang Lim; Hyo-Min Gwak; Ji Yun Kim; Yoon Mi Um; Jung Dae Lee; Ji Hyeon Hyeon; Yeon Joo Kim; Hyung Sik Kim; Byung-Mu Lee

3,4-Methylenedioxy-N-methamphetamine (MDMA, ecstasy) is an amphetamine derivative and is a popular type of drug that is abused due to its effects on the central nervous system (CNS), including alertness and euphoria. However, life-threatening (brain edema, heart failure, and coma) and fatal hyperthermia sometimes occur in some individuals taking MDMA. In a one-generation reproductive toxicity study, the potential toxicity of chronic exposure of MDMA was investigated on the reproductive capabilities of parental mice (F0), as well as the survival/development of their subsequent offspring (F1). Male and female C57BL/6 mice were administered orally MDMA at 0, 1.25, 5 or 20 mg/kg body weight (b.w.) throughout the study, beginning at the premating period, through mating, gestation, and lactation periods. MDMA did not produce any apparent clinical signs in F0 or F1 mice, and produced no significant changes in body weight, feed/water intake, or organ weights. In contrast, administration of MDMA produced external abnormalities in fetuses, stillbirth and labored delivery, and diminished viability and weaning indices in offspring, but these data were not significant. In addition, physical development of F1 mice was not markedly influenced by MDMA treatment. Nonetheless, serum biochemistry markers showed that levels of alkaline phosphatase (ALP), aspartate aminotransferase (AST), and blood urea nitrogen (BUN) were markedly elevated in a dose-dependent manner from 5 mg and higher MDMA/kg b.w., whereas levels of triglycerides (TG), potassium (K), and uric acid (UA) were reduced. Data suggest that MDMA may exert a weak reproductive and developmental toxicity, and the no-observed-adverse-effect level (NOAEL) of MDMA is estimated to be 1.25 mg/kg b.w./d.


Food and Chemical Toxicology | 2018

Detoxifying effect of pyridoxine on acetaminophen-induced hepatotoxicity via suppressing oxidative stress injury

Taehyun Roh; Umasankar De; Seong Kwang Lim; Minkook Kim; Seul Min Choi; Duck Soo Lim; Sungpil Yoon; Sam Kacew; Hyung Sik Kim; Byung-Mu Lee

The detoxifying effect of pyridoxine against acetaminophen (APAP)-induced hepatotoxicity was investigated. HepG2 cells were co-treated with APAP and pyridoxine to compare with betaine or methionine for 24 h. LDH, ALT and AST activities were measured to determine direct cells damage in vitro and in vivo. Lipid peroxidation, antioxidant enzymes activity, and glutathione level were measured. Cytochrome c releaseand procaspase-3, cleaved caspase-3, Bcl-2, or Bax protein levels were measured to determine APAP-induced apoptotic cell death. Pyridoxine treatment significantly increased cell viability and decreased leakage of LDH activity against APAP-induced hepatotoxicity in HepG2 cells. ALT and AST activities were dose-dependently reduced by pyridoxine treatment compared to APAP-treated group. Significant increases in activities of GST and GPx were observed after co-treatment with APAP and pyridoxine. Although APAP-induced Nrf2 and HO-1 expression levels were gradually reduced in HepG2 cells by pyridoxine treatment, induction of antioxidant enzymes activities were dose-dependently increased. These protected effects of pyridoxine against APAP-induced hepatoxicity were closely associated with suppression of APAP-induced oxidative stress and apoptotic cell death in HepG2 cells. These data indicated that the protective action of pyridoxine against hepatic cell injuries was involved in the direct antioxidant activity which provides a pivotal mechanism for its potential hepatoprotective action.


Journal of Toxicology and Environmental Health | 2014

Comparative efficacy and bioequivalence of novel h1-antihistamine bepotastine salts (nicotinate and salicylate).

Duck Soo Lim; Yoo Seok Youn; Seung Jun Kwack; Hyo Min Kwak; Seong Kwang Lim; Ji Yun Kim; Yoon Mi Um; Jung Dae Lee; Ji Hyeon Hyeon; Yeon Joo Kim; Hyung Sik Kim; Byung-Mu Lee

Bepotastine salts (nicotinate and salicylate) were investigated for their physicochemical properties to develop novel salt forms of bepotastine, bioequivalent to the bepotastine besilate-loaded tablet (Talion). These bepotastine salts of either nicotinate- or salicylate-loaded tablets were prepared by conventional wet granulation method, and dissolution profiles and pharmacokinetics in beagle dogs were compared to those of Talion. A novel bepotastine nicotinate has a higher solubility at varying pH levels (1.2, 4, or 6.8) than salicylate-loaded or besilate-loaded salt. In addition, those bepostastine salt forms (nicotinate and salicylate) are stable in heat, light, and water. Further, the novel nicotinate- and salicylate-loaded tablets showed similar dissolution rates to Talion in several selected dissolution media and were bioequivalent to Talion in beagle dogs in terms of area under the concentration–time curve (AUC) and maximum observed concentration (Cmax). A pharmacokinetic study performed in beagle dogs demonstrated that test and reference products were found to be bioequivalent in terms of safety, efficacy, and pharmacokinetic properties. These results suggest that bepostastine nicotinate and salicylate formulations are considered applicable candidates and are well tolerated versus the conventional bepostastine besilate formulation.

Collaboration


Dive into the Seong Kwang Lim's collaboration.

Top Co-Authors

Avatar

M.J. Kwon

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byung-Mu Lee

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Byung Mu Lee

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

J.Y. Bae

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Du Yeon Bang

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

I.Y. Ahn

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

E.Y. Han

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.C. Cho

Sungkyunkwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge