Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Byung-Mu Lee is active.

Publication


Featured researches published by Byung-Mu Lee.


Journal of Toxicology and Environmental Health-part B-critical Reviews | 2014

Estrogenic Endocrine-Disrupting Chemicals: Molecular Mechanisms of Actions on Putative Human Diseases

Kyungsil Yoon; Seung Jun Kwack; Hyung Sik Kim; Byung-Mu Lee

Endocrine-disrupting chemicals (EDC), including phthalates, bisphenol A (BPA), phytoestrogens such as genistein and daidzein, dichlorodiphenyltrichloroethane (DDT), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are associated with a variety of adverse health effects in organisms or progeny by altering the endocrine system. Environmental estrogens, including BPA, phthalates, and phytoestrogens, are the most extensively studied and are considered to mimic the actions of endogenous estrogen, 17β-estradiol (E2). Diverse modes of action of estrogen and estrogen receptors (ERα and ERβ) have been described, but the mode of action of estrogenic EDC is postulated to be more complex and needs to be more clearly elucidated. This review examines the adverse effects of estrogenic EDC on male or female reproductive systems and molecular mechanisms underlying EDC effects that modulate ER-mediated signaling. Mechanisms of action for estrogenic EDC may involve both ER-dependent and ER-independent pathways. Recent findings from systems toxicology of examining estrogenic EDC are also discussed.


Food and Chemical Toxicology | 2014

α-Linolenic acid: nutraceutical, pharmacological and toxicological evaluation.

Kyu-Bong Kim; Yoon A Nam; Hyung Sik Kim; A. Wallace Hayes; Byung-Mu Lee

α-Linolenic acid (ALA), a carboxylic acid with 18 carbons and three cis double bonds, is an essential fatty acid needed for human health and can be acquired via regular dietary intake of foods that contain ALA or dietary supplementation of foods high in ALA, for example flaxseed. ALA has been reported to have cardiovascular-protective, anti-cancer, neuro-protective, anti-osteoporotic, anti-inflammatory, and antioxidative effects. ALA is the precursor of longer chain omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), but its beneficial effects on risk factors for cardiovascular diseases are still inconclusive. The recommended intake of ALA for cardiovascular health is reported to be 1.1-2.2g/day. Although there are limited toxicological data for ALA, no serious adverse effects have been reported. The evidence on an increased prostate cancer risk in association with dietary ALA is not conclusive. Based on the limited data currently available, it may be concluded that ALA may be beneficial as a nutraceutical/pharmaceutical candidate and is safe for use as a food ingredient.


Journal of Toxicology and Environmental Health-part B-critical Reviews | 2013

Safety Evaluation And Risk Assessment Of d-Limonene

Young Woo Kim; Min Ji Kim; Bu Young Chung; Du Yeon Bang; Seong Kwang Lim; Seul Min Choi; Duck Soo Lim; M. C. Cho; Kyungsil Yoon; Hyung Sik Kim; Kyu Bong Kim; You Sun Kim; Seung Jun Kwack; Byung-Mu Lee

d-Limonene, a major constituent of citrus oils, is a monoterpene widely used as a flavor/fragrance additive in cosmetics, foods, and industrial solvents as it possesses a pleasant lemon-like odor. d-Limonene has been designated as a chemical with low toxicity based upon lethal dose (LD50) and repeated-dose toxicity studies when administered orally to animals. However, skin irritation or sensitizing potential was reported following widespread use of this agent in various consumer products. In experimental animals and humans, oxidation products or metabolites of d-limonene were shown to act as skin irritants. Carcinogenic effects have also been observed in male rats, but the mode of action (MOA) is considered irrelevant for humans as the protein α2u-globulin responsible for this effect in rodents is absent in humans. Thus, the liver was identified as a critical target organ following oral administration of d-limonene. Other than the adverse dermal effects noted in humans, other notable toxic effects of d-limonene have not been reported. The reference dose (RfD), the no-observed-adverse-effect level (NOAEL), and the systemic exposure dose (SED) were determined and found to be 2.5 mg/kg/d, 250 mg/kg//d, and 1.48 mg/kg/d, respectively. Consequently, the margin of exposure (MOE = NOAEL/SED) of 169 was derived based upon the data, and the hazard index (HI = SED/RfD) for d-limonene is 0.592. Taking into consideration conservative estimation, d-limonene appears to exert no serious risk for human exposure. Based on adverse effects and risk assessments, d-limonene may be regarded as a safe ingredient. However, the potential occurrence of skin irritation necessitates regulation of this chemical as an ingredient in cosmetics. In conclusion, the use of d-limonene in cosmetics is safe under the current regulatory guidelines for cosmetics.


Journal of Toxicology and Environmental Health | 2014

Risk Assessment of Volatile Organic Compounds Benzene, Toluene, Ethylbenzene, and Xylene (BTEX) in Consumer Products

Seong Kwang Lim; Han Seung Shin; Kyung Sil Yoon; Seung Jun Kwack; Yoon Mi Um; Ji Hyeon Hyeon; Hyo Min Kwak; Ji Yun Kim; Tae Hyung Kim; Yeon Joo Kim; Tae Hyun Roh; Duck Soo Lim; Min-kyung Shin; Seul Min Choi; Hyung Sik Kim; Byung-Mu Lee

Exposure and risk assessment was performed by evaluating levels of volatile organic compounds (VOC) benzene, toluene, ethylbenzene, and xylene (BTEX) in 207 consumer products. The products were categorized into 30 different items, consisting of products of different brands. Samples were analyzed for BTEX by headspace-gas chromatography/mass spectrometry (headspace-GC/MS) with limit of detection (LOD) of 1 ppm. BTEX were detected in 59 consumer products from 18 item types. Benzene was detected in whiteout (ranging from not detected [ND] to 3170 ppm), glue (1486 ppm), oil-based ballpoint pens (47 ppm), and permanent (marking) pens (2 ppm). Toluene was detected in a leather cleaning product (6071 ppm), glue (5078 ppm), whiteout (1130 ppm), self-adhesive wallpaper (15–1012 ppm), shoe polish (806 ppm), permanent pen (609 ppm), wig adhesive (372 ppm), tapes (2–360 ppm), oil-based ballpoint pen (201 ppm), duplex wallpaper (12–52 ppm), shoes (27 ppm), and air freshener (13 ppm). High levels of ethylbenzene were detected in permanent pen (ND–345,065 ppm), shoe polish (ND–277,928 ppm), leather cleaner (42,223 ppm), whiteout (ND–2,770 ppm), and glue (ND–792 ppm). Xylene was detected in permanent pen (ND–285,132 ppm), shoe polish (ND–87,298 ppm), leather cleaner (12,266 ppm), glue (ND–3,124 ppm), and whiteout (ND–1,400 ppm). Exposure assessment showed that the exposure to ethylbenzene from permanent pens ranged from 0 to 3.11 mg/kg/d (men) and 0 to 3.75 mg/kg/d (women), while for xylene, the exposure ranges were 0–2.57 mg/kg/d and 0–3.1 mg/kg/d in men and women, respectively. The exposure of women to benzene from whiteout ranged from 0 to 0.00059 mg/kg/d. Hazard index (HI), defined as a ratio of exposure to reference dose (RfD), for ethylbenzene was 31.1 (3.11 mg/kg/d/0.1 mg/kg/d) and for xylene (2.57 mg/kg/d/0.2 mg/kg/d) was 12.85, exceeding 1 for both compounds. Cancer risk for benzene was calculated to be 3.2 × 10−5 based on (0.00059 mg/kg/d × 0.055 mg/kg-d−1, cancer potency factor), assuming that 100% of detected levels in some products such as permanent pens and whiteouts were exposed in a worst-case scenario. These data suggest that exposure to VOC via some consumer products exceeded the safe limits and needs to be reduced.


Journal of Toxicology and Environmental Health | 2014

Evaluation of Cadmium-Induced Nephrotoxicity Using Urinary Metabolomic Profiles in Sprague-Dawley Male Rats

Yu Kyung Lee; Eun Young Park; Shiwon Kim; Ji Yeon Son; Tae Hyung Kim; Won Gu Kang; Tae Chun Jeong; Kyu-Bong Kim; Seung Jun Kwack; Jaewon Lee; Suhkmann Kim; Byung-Mu Lee; Hyung Sik Kim

The aim of this study was to investigate urinary metabolomic profiles associated with cadmium (Cd)-induced nephrotoxicity and their potential mechanisms. Metabolomic profiles were measured by high-resolution 1H-nuclear magnetic resonance (NMR) spectroscopy in the urine of rats after oral exposure to CdCl2 (1, 5, or 25 mg/kg) for 6 wk. The spectral data were further analyzed by a multivariate analysis to identify specific urinary metabolites. Urinary excretion levels of protein biomarkers were also measured and CdCl2 accumulated dose-dependently in the kidney. High-dose (25 mg/kg) CdCl2 exposure significantly increased serum blood urea nitrogen (BUN), but serum creatinine (sCr) levels were unchanged. High-dose CdCl2 (25 mg/kg) exposure also significantly elevated protein-based urinary biomarkers including osteopontin, monocyte chemoattractant protein-1 (MCP-1), kidney injury molecules-1 (Kim-1), and selenium-binding protein 1 (SBP1) in rat urine. Under these conditions, six urinary metabolites (citrate, serine, 3-hydroxyisovalerate, 4-hydroxyphenyllactate, dimethylamine, and betaine) were involved in mitochondrial energy metabolism. In addition, a few number of amino acids such as glycine, glutamate, tyrosine, proline, or phenylalanine and carbohydrate (glucose) were altered in urine after CdCl2 exposure. In particular, the metabolites involved in the glutathione biosynthesis pathway, including cysteine, serine, methionine, and glutamate, were markedly decreased compared to the control. Thus, these metabolites are potential biomarkers for detection of Cd-induced nephrotoxicity. Our results further indicate that redox metabolomics pathways may be associated with Cd-mediated chronic kidney injury. These findings provide a biochemical pathway for better understanding of cellular mechanism underlying Cd-induced renal injury in humans.


Journal of Toxicology and Environmental Health | 2005

Assessment of estrogenic and androgenic activities of tetramethrin in vitro and in vivo assays.

Soon Sun Kim; Seung Jun Kwack; Rhee Da Lee; Kwon Jo Lim; Gyu Seek Rhee; Ji Hyun Seok; Byung Ho Kim; Yong-Hyuck Won; Geun-Shik Lee; Eui-Bae Jeung; Byung-Mu Lee; Kui-Lea Park

Tetramethrin, a synthetic pyrethroid insecticide, is used globally for agriculture, and thus potential environmental exposure to tetramethrin is a concern. Environmental chemicals that are hormonally active (particularly estrogen or androgen) may adversely affect the reproductive and endocrine systems. However, little is known about the estrogenic and androgenic activities of tetramethrin. In this study, uterine CaBP-9k gene expression assay and a uterotrophic assay were conducted for estrogenic activity assessment of tetramethrin, and a Hershberger assay was conducted for androgenic activity. Estrogen receptor (ERα and ERβ) protein levels were also measured in tetramethrin-treated rat uteri. Northern blot analysis showed reduction in uterine CaBP-9k mRNA levels in response to tetramethrin, as well as when rats were given both tetramethrin and 17β-estradiol (E2). In the uterotrophic assay using 18-d-old female Sprague-Dawley rats, subcutaneous treatment with tetramethrin (5 to 800 mg/kg/day) for 3 d led to a statistically significant decrease in absolute and relative uterine wet weights at all doses tested. Moreover, tetramethrin blocked the effect of E2 on uterine weights. In addition, tetramethrin reduced absolute and relative vaginal wet weights, and also inhibited the increases of vaginal weights produced by E2. Tetramethrin showed no androgenic on antiandrogenic activities in the Hershberger assay. These results suggest that tetramethrin might exert endocrine-disrupting effects on female rats through antiestrogenic action.


Toxicological research | 2011

Toxicological Characterization of Phthalic Acid

Du Yeon Bang; In Kyung Lee; Byung-Mu Lee

There has been growing concern about the toxicity of phthalate esters. Phthalate esters are being used widely for the production of perfume, nail varnish, hairsprays and other personal/cosmetic uses. Recently, exposure to phthalates has been assessed by analyzing urine for their metabolites. The parent phthalate is rapidly metabolized to its monoester (the active metabolite) and also glucuronidated, then excreted. The objective of this study is to evaluate the toxicity of phthalic acid (PA), which is the final common metabolic form of phthalic acid esters (PAEs). The individual PA isomers are extensively employed in the synthesis of synthetic agents, for example isophthalic acid (IPA), and terephthalic acid (TPA), which have very broad applications in the preparation of phthalate ester plasticizers and components of polyester fiber, film and fabricated items. There is a broad potential for exposure by industrial workers during the manufacturing process and by the general public (via vehicle exhausts, consumer products, etc). This review suggests that PA shows in vitro and in vivo toxicity (mutagenicity, developmental toxicity, reproductive toxicity, etc.). In addition, PA seems to be a useful biomarker for multiple exposure to PAEs in humans.


Expert Opinion on Drug Safety | 2015

Comparative safety evaluation of selective androgen receptor modulators and anabolic androgenic steroids.

Seul Min Choi; Byung-Mu Lee

Introduction: Anabolic androgenic steroids (AASs) have been in use for decades for the treatment of short stature, severe burns, HIV wasting syndrome, osteoporosis, and anemia. However, their lack of selective effects on certain symptoms and unfavorable pharmacokinetic properties has limited their long-term usage in clinics. Areas covered: Selective androgen receptor modulators (SARMs) have some advantages over AASs; they are highly specific for androgen receptors, are orally available, and, most importantly, act as strong receptor agonists in skeletal muscle and bone, and as weak agonists or antagonists in androgen-responsive tissues such as the prostate and sebaceous glands. The exact molecular mechanism, however, has not been fully elucidated. This article includes a toxicological review of major AASs, and a comparative safety analysis of major AASs and SARMs in clinical trials to evaluate the therapeutic potential of SARMs. Expert opinion: Based on the robust tissue selectivity of SARMs over AASs, they are worth considering as a promising therapeutic option for the treatment of various muscle-wasting diseases.


Journal of Toxicology and Environmental Health | 2014

Determination of Polycyclic Aromatic Hydrocarbon (PAH) Content and Risk Assessment From Edible Oils in Korea

Bomi Kang; Byung-Mu Lee; Han-Seung Shin

Polycyclic aromatic hydrocarbons (PAH) content and a risk assessment from consumption of Korean edible oils were investigated. Liquid–liquid extraction and gas chromatography–mass spectroscopy were used to measure eight PAH in edible oils commonly consumed in Korea. The total average PAH concentration was 0.548 μg/kg from edible oils and the content of the 8 PAH was lower than 2 μg/kg, which is the maximum tolerable limit reported by the commission regulation. The contents of the eight PAH were converted to exposure assessment and risk characterization values. Dietary exposure to PAH from edible oils was 0.025 ng-TEQBaP/kg/d, and margin of exposure (MOE) was 4 × 106, which represents negligible concern. Although PAH were detected from edible oils in Korea, their contribution to human exposure to PAH is considered not significant.


Journal of Toxicology and Environmental Health-part B-critical Reviews | 2017

Risk assessment of zinc oxide, a cosmetic ingredient used as a UV filter of sunscreens

Kyu-Bong Kim; Young Woo Kim; Seong Kwang Lim; Tae Hyun Roh; Du Yeon Bang; Seul Min Choi; Duck Soo Lim; Yeon Joo Kim; Seol-Hwa Baek; Minkook Kim; Hyo-Seon Seo; Min-Hwa Kim; Hyung Sik Kim; Joo Young Lee; Sam Kacew; Byung-Mu Lee

ABSTRACT Zinc oxide (ZnO), an inorganic compound that appears as a white powder, is used frequently as an ingredient in sunscreens. The aim of this review was to examine the toxicology and risk assessment of ZnO based upon available published data. Recent studies on acute, sub-acute, and chronic toxicities of ZnO indicated that this compound is virtually non-toxic in animal models. However, it was reported that ZnO nanoparticles (NP) (particle size, 40 nm) induced significant changes in anemia-related hematologic parameters and mild to moderate pancreatitis in male and female Sprague-Dawley rats at 536.8 mg/kg/day in a 13-week oral toxicity study. ZnO displayed no carcinogenic potential, and skin penetration is low. No-observed-adverse-effect level (NOAEL) ZnO was determined to be 268.4 mg/kg/day in a 13-week oral toxicity study, and a maximum systemic exposure dose (SED) of ZnO was estimated to be 0.6 mg/kg/day based on topical application of sunscreen containing ZnO. Subsequently, the lowest margin of safety (MOS) was estimated to be 448.2, which indicates that the use of ZnO in sunscreen is safe. A risk assessment was undertaken considering other routes of exposure (inhalation or oral) and major product types (cream, lotion, spray, and propellant). Human data revealed that MOS values (7.37 for skin exposure from cream and lotion type; 8.64 for skin exposure of spray type; 12.87 for inhalation exposure of propellant type; 3.32 for oral exposure of sunscreen) are all within the safe range (MOS > 1). Risk assessment of ZnO indicates that this compound may be used safely in cosmetic products within the current regulatory limits of 25% in Korea.

Collaboration


Dive into the Byung-Mu Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Minkook Kim

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Duck Soo Lim

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Hyo-Min Gwak

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Du Yeon Bang

Sungkyunkwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge