Serena Galati
University of Parma
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Serena Galati.
International Journal of Toxicology | 2012
Claudia Pellacani; Annamaria Buschini; Serena Galati; Francesca Mussi; Susanna Franzoni; Lucio G. Costa
Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants whose levels have increased in the environment and in human tissues in the past decades. Exposure to PBDEs has been associated with developmental neurotoxicity, endocrine dysfunction, and reproductive disorders. In spite of their widespread distribution and potential adverse health effects, only few studies have addressed the potential neurotoxicity of PBDEs. In the present study, we evaluated the cyto- and genotoxicity of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) and decabrominated diphenyl ether (BDE-209) in human neuroblastoma cells (SK-N-MC). The DNA damage was measured using the alkaline version of the Comet assay, while specific oxidative-generated DNA damage was evaluated by a modified version of the Comet assay with the repair enzyme formamidopyrimidine glycosylase (FPG). The results show that BDE-47 and BDE-209 (5-20 μmol/L) are able to induce DNA damage in human SK-N-MC cells. Pretreatment with the antioxidant melatonin significantly reduced the DNA damage induced by both congeners. The Comet assay carried out in the presence of FPG suggests that both congeners increase purine oxidation. In all cases, BDE-47 was more potent than BDE-209. The results indicate that 2 environmentally relevant PBDEs cause DNA damage which is primarily mediated by the induction of oxidative stress and may contribute to adverse health effects.
PLOS ONE | 2012
Luciano Polonelli; Tecla Ciociola; Walter Magliani; Pier Paolo Zanello; Tiziana D'Adda; Serena Galati; Flavia De Bernardis; Silvia Arancia; Elena Gabrielli; Eva Pericolini; Anna Vecchiarelli; Denise C. Arruda; Márcia Pinto; Luiz R. Travassos; Thelma A. Pertinhez; Alberto Spisni; Stefania Conti
Synthetic peptides with sequences identical to fragments of the constant region of different classes (IgG, IgM, IgA) of antibodies (Fc-peptides) exerted a fungicidal activity in vitro against pathogenic yeasts, such as Candida albicans, Candida glabrata, Cryptococcus neoformans, and Malassezia furfur, including caspofungin and triazole resistant strains. Alanine-substituted derivatives of fungicidal Fc-peptides, tested to evaluate the critical role of each residue, displayed unaltered, increased or decreased candidacidal activity in vitro. An Fc-peptide, included in all human IgGs, displayed a therapeutic effect against experimental mucosal and systemic candidiasis in mouse models. It is intriguing to hypothesize that some Fc-peptides may influence the antifungal immune response and constitute the basis for devising new antifungal agents.
Journal of Parasitology Research | 2009
Annamaria Buschini; Lisa Ferrarini; Susanna Franzoni; Serena Galati; Mirca Lazzaretti; Francesca Mussi; Cristina Northfleet de Albuquerque; Tânia Maria Araújo Domingues Zucchi; Paola Poli
Nitroheterocyclic compounds are widely used as therapeutic agents against a variety of protozoan and bacterial infections. However, the literature on these compounds, suspected of being carcinogens, is widely controversial. In this study, cytotoxic and genotoxic potential of three drugs, Nifurtimox (NFX), Benznidazole (BNZ), and Metronidazole (MTZ) was re-evaluated by different assays. Only NFX reduces survival rate in actively proliferating cells. The compounds are more active for base-pair substitution than frameshift induction in Salmonella; NFX and BNZ are more mutagenic than MTZ; they are widely dependent from nitroreduction whereas microsomal fraction S9 weakly affects the mutagenic potential. Comet assay detects BNZ- and NFX-induced DNA damage at doses in the range of therapeutically treated patient plasma concentration; BNZ seems to mainly act through ROS generation whereas a dose-dependent mechanism of DNA damaging is suggested for NFX. The lack of effects on mammalian cells for MTZ is confirmed also in MN assay whereas MN induction is observed for NFX and BNZ. The effects of MTZ, that shows comparatively low reduction potential, seem to be strictly dependent on anaerobic/hypoxic conditions. Both NFX and BNZ may not only lead to cellular damage of the infective agent but also interact with the DNA of mammalian cells.
Cardiovascular and Hematological Agents in Medicinal Chemistry | 2010
Lucia Prezioso; S. Tanzi; Federica Galaverna; Caterina Frati; B. Testa; Monia Savi; Gallia Graiani; Costanza Lagrasta; Stefano Cavalli; Serena Galati; Denise Madeddu; E. Lodi Rizzini; Francesca Ferraro; Ezio Musso; Donatella Stilli; Konrad Urbanek; Elena Piegari; A. De Angelis; A. Maseri; Fernando Rossi; Eugenio Quaini; Federico Quaini
Cardiovascular diseases and cancer represent respectively the first and second cause of death in industrialized countries. These two conditions may become synergistic when cardiovascular complications of anti-cancer therapy are considered. More than 70% of childhood and 50% of adult cancer patients can be cured, however this important success obtained by the biological and medical research is obfuscated by emerging findings of early and late morbidity due to cardiovascular events. Although anthracyclines are effective drugs against cancer a dose-dependent cardiotoxic effects whose mechanism has not been elucidated resulting in failure of therapeutic interventions limit their use. Unexpectedly, tyrosine/kinase inhibitors (TKIs) aimed at molecularly interfering with oncogenic pathways, have been implicated in cardiac side effects. Possible explanations of this phenomenon have been ambiguous, further strengthening the need to deepen our understanding on the mechanism of cardiotoxicity. In addition to a detailed description of anthracyclines and TKIs-related cardiovascular effects, the present review highlights recent observations supporting the hypothesis that the cellular target of anthracyclines and TKIs may include myocardial compartments other than parenchymal cells. The demonstration that the adult mammalian heart possesses a cell turnover regulated by primitive cells suggests that this cell population may be implicated in the onset and development of cardiovascular effects of anti-cancer strategies. The possibility of preventing cardiotoxicity by preservation and/or expansion of the resident stem cell pool responsible for cardiac repair may open new therapeutic options to unravel an unsolved clinical issue.
British Journal of Nutrition | 2012
Lisa Ferrarini; Nicoletta Pellegrini; Teresa Mazzeo; Cristiana Miglio; Serena Galati; Francesco Milano; Carlo Rossi; Annamaria Buschini
Epidemiological evidence shows that regular consumption of Brassicaceae is associated with a reduced risk of cancer and heart disease. Cruciferous species are usually processed before eating and the real impact of cooking practices on their bioactive properties is not fully understood. We have evaluated the effect of common cooking practices (boiling, microwaving, and steaming) on the biological activities of broccoli, cauliflower and Brussels sprouts. Anti-proliferative and chemoprotective effects towards DNA oxidative damage of fresh and cooked vegetable extracts were evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and Comet assays on HT-29 human colon carcinoma cells. The fresh vegetable extracts showed the highest anti-proliferative and antioxidant activities on HT-29 cells (broccoli>cauliflower = Brussels sprouts). No genotoxic activity was detected in any of the samples tested. The cooking methods that were applied influenced the anti-proliferative activity of Brassica extracts but did not alter considerably the antioxidant activity presented by the raw vegetables. Raw, microwaved, boiled (except broccoli) and steamed vegetable extracts, at different concentrations, presented a protective antioxidative action comparable with vitamin C (1 mm). These data provide new insight into the influence of domestic treatment on the quality of food, which could support the recent epidemiological studies suggesting that consumption of cruciferous vegetables, mainly cooked, may be related to a reduced risk of developing cancer.
Scientific Reports | 2016
Luciano Polonelli; Tecla Ciociola; Lisa Elviri; Pier Paolo Zanello; Laura Giovati; Denise C. Arruda; Julián E. Muñoz; Renato A. Mortara; Giulia Morace; Elisa Borghi; Serena Galati; Oriano Marin; Claudio Casoli; Elisabetta Pilotti; Paola Ronzi; Luiz R. Travassos; Walter Magliani; Stefania Conti
A phosphorylated peptide, named K40H, derived from the constant region of IgMs was detected in human serum by liquid chromatography coupled to high-resolution mass spectrometry. Synthetic K40H proved to exert a potent in vitro activity against fungal pathogens, and to inhibit HIV-1 replication in vitro and ex vivo. It also showed a therapeutic effect against an experimental infection by Candida albicans in the invertebrate model Galleria mellonella. K40H represents the proof of concept of the innate role that naturally occurring antibody fragments may exert against infectious agents, shedding a new light upon the posthumous role of antibodies and opening a new scenario on the multifaceted functionality of humoral immunity.
Journal of Public Health Research | 2015
Claudia Zani; Francesco Maria Restivo; Mauro Carcelli; Donatella Feretti; Giorgio Pelosi; Dominga Rogolino; Francesca Degola; Serena Galati; Franco Bisceglie; Annamaria Buschini
Background. In the Po Valley aflatoxins play a relevant role: the local food economy is heavily based on cereal cultivations for animal feed and human nutrition. Aims of this project are the identification of new compounds that inhibit Aspergillus proliferation, the development of new inhibitors of aflatoxins production, and the set-up a practical screening procedure to identify the most effective and safe compounds. Design and Methods. New compounds will be synthetized with natural origin molecules as ligands and endogenous metal ions to increase their bioavailability for the fungi as metal complexes. A biotechnological high-throughput screening will be set up to identify efficiently the most powerful substances. The newly synthesized compounds with effective antifungal activities, will be evaluated with battery of tests with different end-points to assess the toxic potential risk for environmental and human health. Expected impact of the study for public health. The fundamental step in the project will be the synthesis of new compounds and the study of their capability to inhibit aflatoxin biosynthesis. A new, simple, inexpensive and high-throughput method to screen the anti-fungine and anti-mycotoxin activity of the new synthesised compounds will be applied. The evaluation of possible risks for humans due to toxic and genotoxic activities of the molecules will be made with a new approach using different types of cells (bacteria, plants and human cells). Significance for public health Aflatoxins contamination constitutes a health emergency because aflatoxins and mycotoxins, besides being toxic, are among the most carcinogenic substances known. Even if Aspergillus are dominant in tropical regions, recently are becoming a serious problem also in Europe and in Italy, especially in area as the Po Valley in which this problem play a particularly important role, because the local food economy is heavily based not only on cereal cultivations aimed at animal feed but also on the production of derivatives to human nutrition. The aims of this research are the development of new bioactive molecules, obtained by natural molecules and metal ions, that are able to reduce the risk of food contamination by aflatoxin, but are harmless for environmental and health and the evaluation of the newly synthesized compounds using a battery of tests with different end-points to assess the toxic potential risk for environmental and human health.
Pharmacological Research | 2018
Monia Savi; Caterina Frati; Stefano Cavalli; Gallia Graiani; Serena Galati; Annamaria Buschini; Denise Madeddu; Angela Falco; Lucia Prezioso; Giulia Mazzaschi; Federica Galaverna; Costanza Lagrasta; Emilia Corradini; Antonella De Angelis; Donato Cappetta; Liberato Berrino; Franco Aversa; Federico Quaini; Konrad Urbanek
Graphical abstract Figure. No Caption available. ABSTRACT Cardiovascular complications are included among the systemic effects of tyrosine kinase inhibitor (TKI)‐based therapeutic strategies. To test the hypothesis that inhibition of Kit tyrosine kinase that promotes cardiac progenitor cell (CPC) survival and function may be one of the triggering mechanisms of imatinib mesylate (IM)‐related cardiovascular effects, the anatomical, structural and ultrastructural changes in the heart of IM‐treated rats were evaluated. Cardiac anatomy in IM‐exposed rats showed a dose‐dependent, restrictive type of remodeling and depressed hemodynamic performance in the absence of remarkable myocardial fibrosis. The effects of IM on rat and human CPCs were also assessed. IM induced rat CPC depletion, reduced growth and increased cell death. Similar effects were observed in CPCs isolated from human hearts. These results extend the notion that cardiovascular side effects are driven by multiple actions of IM. The identification of cellular mechanisms responsible for cardiovascular complications due to TKIs will enable future strategies aimed at preserving concomitantly cardiac integrity and anti‐tumor activity of advanced cancer treatment.
Food and Chemical Toxicology | 2017
Claudia Zani; Franco Bisceglie; Francesco Maria Restivo; Donatella Feretti; Marianna Pioli; Francesca Degola; Serena Montalbano; Serena Galati; Giorgio Pelosi; Gaia V.C. Viola; Mauro Carcelli; Dominga Rogolino; Elisabetta Ceretti; Annamaria Buschini
Aflatoxins represent a serious problem for a food economy based on cereal cultivations used to fodder animal and for human nutrition. The aims of our work are two-fold: first, to perform an evaluation of the activity of newly synthesized thiosemicarbazone compounds as antifungal and anti-mycotoxin agents and, second, to conduct studies on the toxic and genotoxic hazard potentials with a battery of tests with different endpoints. In this paper we report an initial study on two molecules: S-4-isopropenylcyclohexen-1-carbaldehydethiosemicarbazone and its metal complex, bis(S-4-isopropenylcyclohexen-1-carbaldehydethiosemicarbazonato)nickel (II). The outcome of the assays on fungi growth and aflatoxin production inhibition show that both molecules possess good antifungal activities, without inducing mutagenic effects on bacteria. From the assays to ascertain that the compounds have no adverse effects on human cells, we have found that they are cytotoxic and, in the case of the nickel compound, they also present genotoxic effects.
Biochimica et Biophysica Acta | 2018
Samanta Raboni; Svetlana V. Revtovich; Nicola Demitri; Barbara Giabbai; Paola Storici; Chiara Cocconcelli; Serena Faggiano; Elena Rosini; Loredano Pollegioni; Serena Galati; Annamaria Buschini; Elena Morozova; Vitalia V. Kulikova; Alexey D. Nikulin; Edi Gabellieri; Patrizia Cioni; Tatyana V. Demidkina; Andrea Mozzarelli
Methionine deprivation of cancer cells, which are deficient in methionine biosynthesis, has been envisioned as a therapeutic strategy to reduce cancer cell viability. Methionine γ-lyase (MGL), an enzyme that degrades methionine, has been exploited to selectively remove the amino acid from cancer cell environment. In order to increase MGL catalytic activity, we performed sequence and structure conservation analysis of MGLs from various microorganisms. Whereas most of the residues in the active site and at the dimer interface were found to be conserved, residues located in the C-terminal flexible loop, forming a wall of the active site entry channel, were found to be variable. Therefore, we carried out site-saturation mutagenesis at four independent positions of the C-terminal flexible loop, P357, V358, P360 and A366 of MGL from Citrobacter freundii, generating libraries that were screened for activity. Among the active variants, V358Y exhibits a 1.9-fold increase in the catalytic rate and a 3-fold increase in KM, resulting in a catalytic efficiency similar to wild type MGL. V358Y cytotoxic activity was assessed towards a panel of cancer and nonmalignant cell lines and found to exhibit IC50 lower than the wild type. The comparison of the 3D-structure of V358Y MGL with other MGL available structures indicates that the C-terminal loop is either in an open or closed conformation that does not depend on the amino acid at position 358. Nevertheless, mutations at this position allosterically affects catalysis.