Serge Galzi
SupAgro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Serge Galzi.
PLOS ONE | 2014
Thierry Candresse; Denis Filloux; Brejnev Muhire; Charlotte Julian; Serge Galzi; Guillaume Fort; Pauline Bernardo; Jean-Heinrich Daugrois; Emmanuel Fernandez; Darren P. Martin; Arvind Varsani; Philippe Roumagnac
Comprehensive inventories of plant viral diversity are essential for effective quarantine and sanitation efforts. The safety of regulated plant material exchanges presently relies heavily on techniques such as PCR or nucleic acid hybridisation, which are only suited to the detection and characterisation of specific, well characterised pathogens. Here, we demonstrate the utility of sequence-independent next generation sequencing (NGS) of both virus-derived small interfering RNAs (siRNAs) and virion-associated nucleic acids (VANA) for the detailed identification and characterisation of viruses infecting two quarantined sugarcane plants. Both plants originated from Egypt and were known to be infected with Sugarcane streak Egypt Virus (SSEV; Genus Mastrevirus, Family Geminiviridae), but were revealed by the NGS approaches to also be infected by a second highly divergent mastrevirus, here named Sugarcane white streak Virus (SWSV). This novel virus had escaped detection by all routine quarantine detection assays and was found to also be present in sugarcane plants originating from Sudan. Complete SWSV genomes were cloned and sequenced from six plants and all were found to share >91% genome-wide identity. With the exception of two SWSV variants, which potentially express unusually large RepA proteins, the SWSV isolates display genome characteristics very typical to those of all other previously described mastreviruses. An analysis of virus-derived siRNAs for SWSV and SSEV showed them to be strongly influenced by secondary structures within both genomic single stranded DNA and mRNA transcripts. In addition, the distribution of siRNA size frequencies indicates that these mastreviruses are likely subject to both transcriptional and post-transcriptional gene silencing. Our study stresses the potential advantages of NGS-based virus metagenomic screening in a plant quarantine setting and indicates that such techniques could dramatically reduce the numbers of non-intercepted virus pathogens passing through plant quarantine stations.
Virus Research | 2014
Susan Seal; Aliyu Turaki; Emmanuelle Muller; P. Lava Kumar; Lawrence Kenyon; Denis Filloux; Serge Galzi; Antonio Lopez-Montes; Marie-Line Iskra-Caruana
Yam (Dioscorea spp.) is an important vegetatively-propagated staple crop in West Africa. Viruses are pervasive in yam worldwide, decreasing growth and yield, as well as hindering the international movement of germplasm. Badnaviruses have been reported to be the most prevalent in yam, and genomes of some other badnaviruses are known to be integrated in their host plant species. However, it was not clear if a similar scenario occurs in Dioscorea yam. This study was conducted to verify the prevalence of badnaviruses, and determine if badnavirus genomes are integrated in the yam genome. Leaf samples (n=58) representing eight species of yam from global yam collections kept at CIRAD, France, and 127 samples of D. rotundata breeding lines (n=112) and landraces (n=15) at IITA, Nigeria, were screened using generic badnavirus PCR primers. Positive amplification of an expected ca. 579bp fragment, corresponding to a partial RT-RNaseH region, was detected in 47 (81%) of 58 samples analysed from CIRAD collections, and 100% of the 127 IITA D. rotundata samples. All the D. cayenensis and D. rotundata samples from the CIRAD and IITA collections tested PCR-positive, and sequencing of a selection of the PCR products confirmed they were typical of the genus Badnavirus. A comparison of serological and nucleic acid techniques was used to investigate whether the PCR-positives were sequences amplified from badnavirus particles or putative endogenous badnavirus sequences in the yam genome. Protein A sandwich-enzyme-linked immunosorbent assay (PAS-ELISA) with badnavirus polyclonal antisera detected cross-reacting viral particles in only 60% (92 of 153) of the CIRAD collection samples analysed, in contrast to the aforementioned 81% by PCR. Immunosorbent electron microscopy (ISEM) of virus preparations of a select set of 16 samples, representing different combinations of positive and negative PCR and PAS-ELISA results, identified bacilliform particles in 11 of these samples. Three PCR-positive yam samples from Burkina Faso (cv. Pilimpikou) were identified in which no viral particles were detected by either PAS-ELISA or ISEM. Southern hybridisation results using a yam badnavirus RT-RNaseH sequence (Gn155Dr) as probe, supported a lack of badnavirus particles in the cv. Pilimpikou and identified their equivalent sequences to be of plant genome origin. Probe Gn155Dr, however, hybridised to viral particles and plant genomic DNA in three D. rotundata samples from Guinea. These results represent the first data demonstrating the presence of integrated sequences of badnaviruses in yam. The implications of this for virus-indexing, breeding and multiplication of seed yams are discussed.
Journal of Virology | 2015
Philippe Roumagnac; Martine Granier; Pauline Bernardo; Maëlle Deshoux; Romain Ferdinand; Serge Galzi; Emmanuel Fernandez; Charlotte Julian; Isabelle Abt; Denis Filloux; François Mesléard; Arvind Varsani; Stéphane Blanc; Darren P. Martin; Michel Peterschmitt
ABSTRACT The family Geminiviridae comprises seven genera differentiated by genome organization, sequence similarity, and insect vector. Capulavirus, an eighth genus, has been proposed to accommodate two newly discovered highly divergent geminiviruses that presently have no known vector. Alfalfa leaf curl virus, identified here as a third capulavirus, is shown to be transmitted by Aphis craccivora. This is the first report of an aphid-transmitted geminivirus.
Virology | 2016
Pauline Bernardo; Brejnev Muhire; Sarah François; Maëlle Deshoux; Penelope Hartnady; Kata Farkas; Simona Kraberger; Denis Filloux; Emmanuel Fernandez; Serge Galzi; Romain Ferdinand; Martine Granier; Armelle Marais; Pablo Monge Blasco; Thierry Candresse; Fernando Escriu; Arvind Varsani; Gordon William Harkins; Darren P. Martin; Philippe Roumagnac
Little is known about the prevalence, diversity, evolutionary processes, genomic structures and population dynamics of viruses in the divergent geminivirus lineage known as the capulaviruses. We determined and analyzed full genome sequences of 13 Euphorbia caput-medusae latent virus (EcmLV) and 26 Alfalfa leaf curl virus (ALCV) isolates, and partial genome sequences of 23 EcmLV and 37 ALCV isolates. While EcmLV was asymptomatic in uncultivated southern African Euphorbia caput-medusae, severe alfalfa disease symptoms were associated with ALCV in southern France. The prevalence of both viruses exceeded 10% in their respective hosts. Besides using patterns of detectable negative selection to identify ORFs that are probably functionally expressed, we show that ALCV and EcmLV both display evidence of inter-species recombination and biologically functional genomic secondary structures. Finally, we show that whereas the EcmLV populations likely experience restricted geographical dispersion, ALCV is probably freely moving across the French Mediterranean region.
Methods of Molecular Biology | 2015
Denis Filloux; Sylvie Dallot; Agnès Delaunay; Serge Galzi; Emmanuel Jacquot; Philippe Roumagnac
This chapter describes an efficient approach that combines quality and yield extraction of viral nucleic acids from plants containing high levels of secondary metabolites and a sequence-independent amplification procedure for both the inventory of known plant viruses and the discovery of unknown ones. This approach turns out to be a useful tool for assessing the virome (the genome of all the viruses that inhabit a particular organism) of plants of interest. We here show that this approach enables the identification of a novel Potyvirus member within a single plant already known to be infected by two other Potyvirus species.
Archives of Virology | 2017
Essowé Palanga; Darren P. Martin; Serge Galzi; Jean Zabré; Zakaria Bouda; James Bouma Neya; Mahamadou Sawadogo; Oumar Traoré; Michel Peterschmitt; Philippe Roumagnac; Denis Filloux
The full-length genome sequences of two novel poleroviruses found infecting cowpea plants, cowpea polerovirus 1 (CPPV1) and cowpea polerovirus 2 (CPPV2), were determined using overlapping RT-PCR and RACE-PCR. Whereas the 5845-nt CPPV1 genome was most similar to chickpea chlorotic stunt virus (73% identity), the 5945-nt CPPV2 genome was most similar to phasey bean mild yellow virus (86% identity). The CPPV1 and CPPV2 genomes both have a typical polerovirus genome organization. Phylogenetic analysis of the inferred P1-P2 and P3 amino acid sequences confirmed that CPPV1 and CPPV2 are indeed poleroviruses. Four apparently unique recombination events were detected within a dataset of 12 full polerovirus genome sequences, including two events in the CPPV2 genome. Based on the current species demarcation criteria for the family Luteoviridae, we tentatively propose that CPPV1 and CPPV2 should be considered members of novel polerovirus species.
Viruses | 2018
Zohreh Davoodi; Nicolás Bejerman; Cécile Richet; Denis Filloux; S. G. Kumari; Elisavet K. Chatzivassiliou; Serge Galzi; Charlotte Julian; Samira Samarfard; Verónica Trucco; F. Giolitti; Elvira Fiallo-Olivé; Jesús Navas-Castillo; Nader Asaad; Abdul Rahman Moukahel; Jomana Hijazi; Samia Mghandef; Jahangir Heydarnejad; H. Massumi; Arvind Varsani; Ralf G. Dietzgen; Gordon William Harkins; Darren P. Martin; Philippe Roumagnac
Alfalfa leaf curl virus (ALCV), which causes severe disease symptoms in alfalfa (Medicago sativa L.) and is transmitted by the widespread aphid species, Aphis craccivora Koch, has been found throughout the Mediterranean basin as well as in Iran and Argentina. Here we reconstruct the evolutionary history of ALCV and attempt to determine whether the recent discovery and widespread detection of ALCV is attributable either to past diagnostic biases or to the emergence and global spread of the virus over the past few years. One hundred and twenty ALCV complete genome sequences recovered from ten countries were analyzed and four ALCV genotypes (ALCV-A, ALCV-B, ALCV-C, and ALCV-D) were clearly distinguished. We further confirm that ALCV isolates are highly recombinogenic and that recombination has been a major determinant in the origins of the various genotypes. Collectively, the sequence data support the hypothesis that, of all the analyzed locations, ALCV likely emerged and diversified in the Middle East before spreading to the western Mediterranean basin and Argentina.
Molecular Plant Pathology | 2014
Marie Umber; Denis Filloux; Emmanuelle Muller; Nathalie Laboureau; Serge Galzi; Philippe Roumagnac; Marie-Line Iskra-Caruana; Claudie Pavis; Pierre-Yves Teycheney; Susan Seal
Virus Evolution | 2015
Denis Filloux; Sasha Murrell; Maneerat Koohapitagtam; Michael Golden; Charlotte Julian; Serge Galzi; Marilyne Uzest; Marguerite Rodier-Goud; Angélique D’Hont; Marie Stephanie Vernerey; Paul Wilkin; Michel Peterschmitt; Stephan Winter; Ben Murrell; Darren P. Martin; Philippe Roumagnac
Advances in Virus Research | 2018
Sohini Claverie; Pauline Bernardo; Simona Kraberger; Penelope Hartnady; Pierre Lefeuvre; Jean Michel Lett; Serge Galzi; Denis Filloux; Gordon William Harkins; Arvind Varsani; Darren P. Martin; Philippe Roumagnac
Collaboration
Dive into the Serge Galzi's collaboration.
Centre de coopération internationale en recherche agronomique pour le développement
View shared research outputsCentre de coopération internationale en recherche agronomique pour le développement
View shared research outputs