Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergei S. Nikonov is active.

Publication


Featured researches published by Sergei S. Nikonov.


Current Opinion in Neurobiology | 1999

Molecular mechanisms of vertebrate photoreceptor light adaptation

Edward N. Pugh; Sergei S. Nikonov; Trevor D. Lamb

An important recent advance in the understanding of vertebrate photoreceptor light adaptation has come from the discovery that as many as eight distinct molecular mechanisms may be involved, and the realization that one of the principal mechanisms is not dependent on calcium. Quantitative analysis of these mechanisms is providing new insights into the nature of rod photoreceptor light adaptation.


The Journal of General Physiology | 2006

Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings.

Sergei S. Nikonov; Roman Kholodenko; Janis Lem; Edward N. Pugh

Cone cells constitute only 3% of the photoreceptors of the wild-type (WT) mouse. While mouse rods have been thoroughly investigated with suction pipette recordings of their outer segment membrane currents, to date no recordings from WT cones have been published, likely because of the rarity of cones and the fragility of their outer segments. Recently, we characterized the photoreceptors of Nrl −/− mice, using suction pipette recordings from their “inner segments” (perinuclear region), and found them to be cones. Here we report the use of this same method to record for the first time the responses of single cones of WT mice, and of mice lacking the α-subunit of the G-protein transducin (G tα−/−), a loss that renders them functionally rodless. Most cones were found to functionally co-express both S- (λmax = 360 nm) and M- (λmax = 508 nm) cone opsins and to be maximally sensitive at 360 nm (“S-cones”); nonetheless, all cones from the dorsal retina were found to be maximally sensitive at 508 nm (“M-cones”). The dim-flash response kinetics and absolute sensitivity of S- and M-cones were very similar and not dependent on which of the coexpressed cone opsins drove transduction; the time to peak of the dim-flash response was ∼70 ms, and ∼0.2% of the circulating current was suppressed per photoisomerization. Amplification in WT cones (A ∼4 s−2) was found to be about twofold lower than in rods (A ∼8 s−2). Mouse M-cones maintained their circulating current at very nearly the dark adapted level even when >90% of their M-opsin was bleached. S-cones were less tolerant to bleached S-opsin than M-cones to bleached M-opsin, but still far more tolerant than mouse rods to bleached rhodopsin, which exhibit persistent suppression of nearly 50% of their circulating current following a 20% bleach. Thus, the three types of mouse opsin appear distinctive in the degree to which their bleached, unregenerated opsins generate “dark light.”


Neuron | 2008

Mouse Cones Require an Arrestin for Normal Inactivation of Phototransduction

Sergei S. Nikonov; Bruce M. Brown; Jason Davis; Freddi I. Zuniga; Alvina Bragin; Edward N. Pugh; Cheryl M. Craft

Arrestins are proteins that arrest the activity of G protein-coupled receptors (GPCRs). While it is well established that normal inactivation of photoexcited rhodopsin, the GPCR of rod phototransduction, requires arrestin (Arr1), it has been controversial whether the same requirement holds for cone opsin inactivation. Mouse cone photoreceptors express two distinct visual arrestins: Arr1 and Arr4. By means of recordings from cones of mice with one or both arrestins knocked out, this investigation establishes that a visual arrestin is required for normal cone inactivation. Arrestin-independent inactivation is 70-fold more rapid in cones than in rods, however. Dual arrestin expression in cones could be a holdover from ancient genome duplication events that led to multiple isoforms of arrestin, allowing evolutionary specialization of one form while the other maintains the basic function.


The Journal of General Physiology | 2005

Photoreceptors of Nrl -/- mice coexpress functional S- and M-cone opsins having distinct inactivation mechanisms.

Sergei S. Nikonov; Lauren L. Daniele; Xuemei Zhu; Cheryl M. Craft; Anand Swaroop; Edward N. Pugh

The retinas of mice null for the neural retina leucine zipper transcription factor (Nrl −/ −) contain no rods but are populated instead with photoreceptors that on ultrastructural, histochemical, and molecular criteria appear cone like. To characterize these photoreceptors functionally, responses of single photoreceptors of Nrl −/ − mice were recorded with suction pipettes at 35–37°C and compared with the responses of rods of WT mice. Recordings were made either in the conventional manner, with the outer segment (OS) drawn into the pipette (“OS in”), or in a novel configuration with a portion of the inner segment drawn in (“OS out”). Nrl −/ − photoreceptor responses recorded in the OS-out configuration were much faster than those of WT rods: for dim-flash responses t peak = 91 ms vs. 215 ms; for saturating flashes, dominant recovery time constants, τD = 110 ms vs. 240 ms, respectively. Nrl −/ − photoreceptors in the OS-in configuration had reduced amplification, sensitivity, and slowed recovery kinetics, but the recording configuration had no effect on rod response properties, suggesting Nrl −/ − outer segments to be more susceptible to damage. Functional coexpression of two cone pigments in a single mammalian photoreceptor was established for the first time; the responses of every Nrl −/ − cell were driven by both the short-wave (S, λmax ≈ 360 nm) and the mid-wave (M, λmax ≈ 510 nm) mouse cone pigment; the apparent ratio of coexpressed M-pigment varied from 1:1 to 1:3,000 in a manner reflecting a dorso-ventral retinal position gradient. The role of the G-protein receptor kinase Grk1 in cone pigment inactivation was investigated in recordings from Nrl −/ −/Grk1 − / − photoreceptors. Dim-flash responses of cells driven by either the S- or the M-cone pigment were slowed 2.8-fold and 7.5-fold, respectively, in the absence of Grk1; the inactivation of the M-pigment response was much more seriously retarded. Thus, Grk1 is essential to normal inactivation of both S- and M-mouse cone opsins, but S-opsin has access to a relatively effective, Grk1-independent inactivation pathway.


The Journal of Neuroscience | 2010

Type 3 Deiodinase, a Thyroid-Hormone-Inactivating Enzyme, Controls Survival and Maturation of Cone Photoreceptors

Lily Ng; Arkady Lyubarsky; Sergei S. Nikonov; Michelle Ma; Maya Srinivas; Benjamin Kefas; Donald L. St. Germain; Arturo Hernandez; Edward N. Pugh; Douglas Forrest

Maturation of the mammalian nervous system requires adequate provision of thyroid hormone and mechanisms that enhance tissue responses to the hormone. Here, we report that the development of cones, the photoreceptors for daylight and color vision, requires protection from thyroid hormone by type 3 deiodinase, a thyroid hormone-inactivating enzyme. Type 3 deiodinase, encoded by Dio3, is expressed in the immature mouse retina. In Dio3−/− mice, ∼80% of cones are lost through neonatal cell death. Cones that express opsin photopigments for response to both short (S) and medium-long (M) wavelength light are lost. Rod photoreceptors, which mediate dim light vision, remain essentially intact. Excessive thyroid hormone in wild-type pups also eliminates cones. Cone loss is mediated by cone-specific thyroid hormone receptor β2 (TRβ2) as deletion of TRβ2 rescues cones in Dio3−/− mice. However, rescued cones respond to short but not longer wavelength light because TRβ2 under moderate hormonal stimulation normally induces M opsin and controls the patterning of M and S opsins over the retina. The results suggest that type 3 deiodinase limits hormonal exposure of the cone to levels that safeguard both cone survival and the patterning of opsins that is required for cone function.


The Journal of Neuroscience | 2011

Imaging Light Responses of Targeted Neuron Populations in the Rodent Retina

Bart G. Borghuis; Lin Tian; Ying Xu; Sergei S. Nikonov; Noga Vardi; Boris V. Zemelman; Loren L. Looger

Decoding the wiring diagram of the retina requires simultaneous observation of activity in identified neuron populations. Available recording methods are limited in their scope: electrodes can access only a small fraction of neurons at once, whereas synthetic fluorescent indicator dyes label tissue indiscriminately. Here, we describe a method for studying retinal circuitry at cellular and subcellular levels combining two-photon microscopy and a genetically encoded calcium indicator. Using specific viral and promoter constructs to drive expression of GCaMP3, we labeled all five major neuron classes in the adult mouse retina. Stimulus-evoked GCaMP3 responses as imaged by two-photon microscopy permitted functional cell type annotation. Fluorescence responses were similar to those measured with the small molecule dye OGB-1. Fluorescence intensity correlated linearly with spike rates >10 spikes/s, and a significant change in fluorescence always reflected a significant change in spike firing rate. GCaMP3 expression had no apparent effect on neuronal function. Imaging at subcellular resolution showed compartment-specific calcium dynamics in multiple identified cell types.


Journal of Cell Science | 2004

Quantification of the cytoplasmic spaces of living cells with EGFP reveals arrestin-EGFP to be in disequilibrium in dark adapted rod photoreceptors

Jon A. Peet; Alvina Bragin; Peter D. Calvert; Sergei S. Nikonov; Shoba Mani; Xinyu Zhao; Joseph C. Besharse; Eric A. Pierce; Barry E. Knox; Edward N. Pugh

The hypothesis is tested that enhanced green fluorescent protein (EGFP) can be used to quantify the aqueous spaces of living cells, using as a model transgenic Xenopus rods. Consistent with the hypothesis, regions of rods having structures that exclude EGFP, such as the mitochondrial-rich ellipsoid and the outer segments, have highly reduced EGFP fluorescence. Over a 300-fold range of expression the average EGFP concentration in the outer segment was approximately half that in the most intensely fluorescent regions of the inner segment, in quantitative agreement with prior X-ray diffraction estimates of outer segment cytoplasmic volume. In contrast, the fluorescence of soluble arrestin-EGFP fusion protein in the dark adapted rod outer segment was approximately threefold lower than predicted by the EGFP distribution, establishing that the fusion protein is not equilibrated with the cytoplasm. Arrestin-EGFP mass was conserved during a large-scale, light-driven redistribution in which ∼40% of the protein in the inner segment moved to the outer segment in less than 30 minutes.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells

Benjamin Gaub; Michael H. Berry; Amy Holt; Andreas Reiner; Michael A. Kienzler; Natalia Dolgova; Sergei S. Nikonov; Gustavo D. Aguirre; William A. Beltran; John G. Flannery; Ehud Y. Isacoff

Significance We restored visual function to animal models of human blindness using a chemical compound that photosensitizes a mammalian ion channel. Virus-mediated expression of this light sensor in surviving retinal cells of blind mice restored light responses in vitro, reanimated innate light avoidance, and enabled learned visually guided behavior. The treatment also restored light responses to the retina of blind dogs. Patients that might benefit from this treatment would need to have intact ganglion cell and nerve fiber layers. In general, these are patients diagnosed with retinitis pigmentosa and some forms of Leber congenital amaurosis. Patients diagnosed with other types of blindness, for example, age-related macular degeneration or diabetic retinopathy, would not be candidates for this treatment. Most inherited forms of blindness are caused by mutations that lead to photoreceptor cell death but spare second- and third-order retinal neurons. Expression of the light-gated excitatory mammalian ion channel light-gated ionotropic glutamate receptor (LiGluR) in retinal ganglion cells (RGCs) of the retina degeneration (rd1) mouse model of blindness was previously shown to restore some visual functions when stimulated by UV light. Here, we report restored retinal function in visible light in rodent and canine models of blindness through the use of a second-generation photoswitch for LiGluR, maleimide-azobenzene-glutamate 0 with peak efficiency at 460 nm (MAG0460). In the blind rd1 mouse, multielectrode array recordings of retinal explants revealed robust and uniform light-evoked firing when LiGluR-MAG0460 was targeted to RGCs and robust but diverse activity patterns in RGCs when LiGluR-MAG0460 was targeted to ON-bipolar cells (ON-BCs). LiGluR-MAG0460 in either RGCs or ON-BCs of the rd1 mouse reinstated innate light-avoidance behavior and enabled mice to distinguish between different temporal patterns of light in an associative learning task. In the rod-cone dystrophy dog model of blindness, LiGluR-MAG0460 in RGCs restored robust light responses to retinal explants and intravitreal delivery of LiGluR and MAG0460 was well tolerated in vivo. The results in both large and small animal models of photoreceptor degeneration provide a path to clinical translation.


Vision Research | 2011

A Mouse M-opsin Monochromat: Retinal Cone Photoreceptors have increased M-Opsin Expression when S-Opsin is knocked out

Lauren L. Daniele; Christine Insinna; Rebecca K. Chance; Jinhua Wang; Sergei S. Nikonov; Edward N. Pugh

Mouse cone photoreceptors, like those of most mammals including humans, express cone opsins derived from two ancient families: S-opsin (gene Opn1sw) and M-opsin (gene Opn1mw). Most C57Bl/6 mouse cones co-express both opsins, but in dorso-ventral counter-gradients, with M-opsin dominant in the dorsal retina and S-opsin in the ventral retina, and S-opsin 4-fold greater overall. We created a mouse lacking S-opsin expression by the insertion of a Neomycin selection cassette between the third and fourth exons of the Opn1sw gene (Opn1sw(Neo/Neo)). In strong contrast to published results characterizing mice lacking rhodopsin (Rho⁻/⁻) in which retinal rods undergo cell death by 2.5 months, cones of the Opn1sw(Neo/Neo) mouse remain viable for at least 1.5 yrs, even though many ventral cones do not form outer segments, as revealed by high resolution immunohistochemistry and electron microscopy. Suction pipette recordings revealed that functional ventral cones of the Opn1sw(Neo/Neo) mouse not only phototransduce light with normal kinetics, but are more sensitive to mid-wavelength light than their WT counterparts. Quantitative Western blot analysis revealed the basis of the heightened sensitivity to be increased M-opsin expression. Because S- and M-opsin transcripts must compete for the same translational machinery in cones where they are co-expressed, elimination of S-opsin mRNA in ventral Opn1sw(Neo/Neo) cones likely increases M-opsin expression by relieving competition for translational machinery, revealing an important consequence of eliminating a dominant transcript. Overall, our results reveal a striking capacity for cone photoreceptors to function with much reduced opsin expression, and to remain viable in the absence of an outer segment.


The Journal of Neuroscience | 2013

Cones Respond to Light in the Absence of Transducin β Subunit

Sergei S. Nikonov; Arkady Lyubarsky; Marie E. Fina; Elena S. Nikonova; Abhishek Sengupta; Chidambaram Chinniah; Xi-Qin Ding; Robert G. Smith; Edward N. Pugh; Noga Vardi; Anuradha Dhingra

Mammalian cones respond to light by closing a cGMP-gated channel via a cascade that includes a heterotrimeric G-protein, cone transducin, comprising Gαt2, Gβ3 and Gγt2 subunits. The function of Gβγ in this cascade has not been examined. Here, we investigate the role of Gβ3 by assessing cone structure and function in Gβ3-null mouse (Gnb3−/−). We found that Gβ3 is required for the normal expression of its partners, because in the Gnb3−/− cone outer segments, the levels of Gαt2 and Gγt2 are reduced by fourfold to sixfold, whereas other components of the cascade remain unaltered. Surprisingly, Gnb3−/− cones produce stable responses with normal kinetics and saturating response amplitudes similar to that of the wild-type, suggesting that cone phototransduction can function efficiently without a Gβ subunit. However, light sensitivity was reduced by approximately fourfold in the knock-out cones. Because the reduction in sensitivity was similar in magnitude to the reduction in Gαt2 level in the cone outer segment, we conclude that activation of Gαt2 in Gnb3−/− cones proceeds at a rate approximately proportional to its outer segment concentration, and that activation of phosphodiesterase and downstream cascade components is normal. These results suggest that the main role of Gβ3 in cones is to establish optimal levels of transducin heteromer in the outer segment, thereby indirectly contributing to robust response properties.

Collaboration


Dive into the Sergei S. Nikonov's collaboration.

Top Co-Authors

Avatar

Edward N. Pugh

University of California

View shared research outputs
Top Co-Authors

Avatar

Arkady Lyubarsky

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Lauren L. Daniele

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jean Bennett

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Cheryl M. Craft

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Anand Swaroop

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Barry E. Knox

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Jason Davis

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Noga Vardi

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Peter D. Calvert

State University of New York Upstate Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge