Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter D. Calvert is active.

Publication


Featured researches published by Peter D. Calvert.


Nature | 2001

Membrane protein diffusion sets the speed of rod phototransduction

Peter D. Calvert; V. I. Govardovskii; N. V. Krasnoperova; Robert E. Anderson; Janis Lem; Clint L. Makino

Retinal rods signal the activation of a single receptor molecule by a photon. To ensure efficient photon capture, rods maintain about 109 copies of rhodopsin densely packed into membranous disks. But a high packing density of rhodopsin may impede other steps in phototransduction that take place on the disk membrane, by restricting the lateral movement of, and hence the rate of encounters between, the molecules involved. Although it has been suggested that lateral diffusion of proteins on the membrane sets the rate of onset of the photoresponse, it was later argued that the subsequent processing of the complexes was the main determinant of this rate. The effects of protein density on response shut-off have not been reported. Here we show that a roughly 50% reduction in protein crowding achieved by the hemizygous knockout of rhodopsin in transgenic mice accelerates the rising phases and recoveries of flash responses by about 1.7-fold in vivo. Thus, in rods the rates of both response onset and recovery are set by the diffusional encounter frequency between proteins on the disk membrane.


The Journal of Neuroscience | 2004

The Y99C Mutation in Guanylyl Cyclase-Activating Protein 1 Increases Intracellular Ca2+ and Causes Photoreceptor Degeneration in Transgenic Mice

Elena V. Olshevskaya; Peter D. Calvert; Michael L. Woodruff; Igor V. Peshenko; Andrey Savchenko; Clint L. Makino; Ye-Shih Ho; Gordon L. Fain; Alexander M. Dizhoor

Guanylyl cyclase-activating proteins (GCAPs) are Ca2+-binding proteins that activate guanylyl cyclase when free Ca2+ concentrations in retinal rods and cones fall after illumination and inhibit the cyclase when free Ca2+ reaches its resting level in the dark. Several forms of retinal dystrophy are caused by mutations in GUCA1A, the gene coding for GCAP1. To investigate the cellular mechanisms affected by the diseased state, we created transgenic mice that express GCAP1 with a Tyr99Cys substitution (Y99C GCAP1) found in human patients with a late-onset retinal dystrophy (Payne et al., 1998). Y99C GCAP1 shifted the Ca2+ sensitivity of the guanylyl cyclase in photoreceptors, keeping it partially active at 250 nm free Ca2+, the normal resting Ca2+ concentration in darkness. The enhanced activity of the cyclase in the dark increased cyclic nucleotide-gated channel activity and elevated the rod outer segment Ca2+ concentration in darkness, measured by using fluo-5F and laser spot microscopy. In different lines of transgenic mice the magnitude of this effect rose with the Y99C GCAP1 expression. Surprisingly, there was little change in the rod photoresponse, indicating that dynamic Ca2+-dependent regulation of cGMP synthesis was preserved. However, the photoreceptors in these mice degenerated, and the rate of the cell loss increased with the level of the transgene expression, unlike in transgenic mice that overexpressed normal GCAP1. These results provide the first direct evidence that a mutation linked to congenital blindness increases Ca2+ in the outer segment, which may trigger the apoptotic process.


The Journal of General Physiology | 2010

Diffusion of a soluble protein, photoactivatable GFP, through a sensory cilium

Peter D. Calvert; William E. Schiesser; Edward N. Pugh

Transport of proteins to and from cilia is crucial for normal cell function and survival, and interruption of transport has been implicated in degenerative and neoplastic diseases. It has been hypothesized that the ciliary axoneme and structures adjacent to and including the basal bodies of cilia impose selective barriers to the movement of proteins into and out of the cilium. To examine this hypothesis, using confocal and multiphoton microscopy we determined the mobility of the highly soluble photoactivatable green fluorescent protein (PAGFP) in the connecting cilium (CC) of live Xenopus retinal rod photoreceptors, and in the contiguous subcellular compartments bridged by the CC, the inner segment (IS) and the outer segment (OS). The estimated axial diffusion coefficients are DCC = 2.8 ± 0.3, DIS = 5.2 ± 0.6, and DOS = 0.079 ± 0.009 µm2 s−1. The results establish that the CC does not pose a major barrier to protein diffusion within the rod cell. However, the results also reveal that axial diffusion in each of the rod’s compartments is substantially retarded relative to aqueous solution: the axial diffusion of PAGFP was retarded ∼18-, 32- and 1,000-fold in the IS, CC, and OS, respectively, with ∼20-fold of the reduction in the OS attributable to tortuosity imposed by the lamellar disc membranes. Previous investigation of PAGFP diffusion in passed, spherical Chinese hamster ovary cells yielded DCHO = 20 µm2 s−1, and estimating cytoplasmic viscosity as Daq/DCHO = 4.5, the residual 3- to 10-fold reduction in PAGFP diffusion is ascribed to sub-optical resolution structures in the IS, CC, and OS compartments.


Journal of Cell Science | 2004

Quantification of the cytoplasmic spaces of living cells with EGFP reveals arrestin-EGFP to be in disequilibrium in dark adapted rod photoreceptors

Jon A. Peet; Alvina Bragin; Peter D. Calvert; Sergei S. Nikonov; Shoba Mani; Xinyu Zhao; Joseph C. Besharse; Eric A. Pierce; Barry E. Knox; Edward N. Pugh

The hypothesis is tested that enhanced green fluorescent protein (EGFP) can be used to quantify the aqueous spaces of living cells, using as a model transgenic Xenopus rods. Consistent with the hypothesis, regions of rods having structures that exclude EGFP, such as the mitochondrial-rich ellipsoid and the outer segments, have highly reduced EGFP fluorescence. Over a 300-fold range of expression the average EGFP concentration in the outer segment was approximately half that in the most intensely fluorescent regions of the inner segment, in quantitative agreement with prior X-ray diffraction estimates of outer segment cytoplasmic volume. In contrast, the fluorescence of soluble arrestin-EGFP fusion protein in the dark adapted rod outer segment was approximately threefold lower than predicted by the EGFP distribution, establishing that the fusion protein is not equilibrated with the cytoplasm. Arrestin-EGFP mass was conserved during a large-scale, light-driven redistribution in which ∼40% of the protein in the inner segment moved to the outer segment in less than 30 minutes.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Steric volume exclusion sets soluble protein concentrations in photoreceptor sensory cilia

Mehdi Najafi; Nycole Maza; Peter D. Calvert

Proteins segregate into discrete subcellular compartments via a variety of mechanisms, including motor protein transport, local binding, and diffusion barriers. This physical separation of cell functions serves, in part, as a mechanism for controlling compartment activity by allowing regulation of local protein concentrations. In this study we explored how soluble protein size impacts access to the confined space within the retinal photoreceptor outer segment signaling compartment and discovered a strikingly steep relationship. We find that GFP monomers, dimers, and trimers expressed transgenically in frog rods are present in the outer segment at 1.8-, 2.9-, and 6.8-fold lower abundances, relative to the cell body, than the small soluble fluorescent marker, calcein. Theoretical analysis, based on statistical–mechanical models of molecular access to polymer meshes, shows that these observations can be explained by the steric hindrance of molecules occupying the highly constrained spaces between outer segment disc membranes. This mechanism may answer a long-standing question of how the soluble regulatory protein, arrestin, is effectively excluded from the outer segments of dark-adapted rods and cones. Generally, our results suggest an alternate mode for the control of protein access to cell domains based on dynamic, size-dependent compartmental partitioning that does not require diffusion barriers, active transport, or large numbers of immobile binding sites.


Journal of Microscopy | 2007

Fluorescence relaxation in 3D from diffraction-limited sources of PAGFP or sinks of EGFP created by multiphoton photoconversion.

Peter D. Calvert; J. A. Peet; Alvina Bragin; William E. Schiesser; Edward N. Pugh

The relaxation of fluorescence from diffraction‐limited sources of photoactivatable green fluorescent protein (PAGFP) or sinks of photobleached enhanced GFP (EGFP) created by multiphoton photo‐conversion was measured in solutions of varied viscosity (η), and in live, spherical Chinese hamster ovary (CHO) cells. Fluorescence relaxation was monitored with the probing laser fixed, or rapidly scanning along a line bisected by the photoconversion site. Novel solutions to several problems that hamper the study of PAGFP diffusion after multiphoton photoconversion are presented. A theoretical model of 3D diffusion in a sphere from a source in the shape of the measured multiphoton point‐spread function was applied to the fluorescence data to estimate the apparent diffusion coefficient, Dap. The model incorporates two novel features that make it of broad utility. First, the model includes the no‐flux boundary condition imposed by cell plasma membranes, allowing assessment of potential impact of this boundary on estimates of Dap. Second, the model uses an inhomogeneous source term that, for the first time, allows analysis of diffusion from sources produced by multiphoton photoconversion pulses of varying duration. For diffusion in aqueous solution, indistinguishable linear relationships between Dap and η−1 were obtained for the two proteins: for PAGFP, Daq= 89 ± 2.4 μm2 s−1 (mean ± 95% confidence interval), and for EGFP Daq= 91 ± 1.8 μm2 s−1. In CHO cells, the application of the model yielded Dap= 20 ± 3 μm2 s−1 (PAGFP) and 19 ± 2 μm2 s−1 (EGFP). Furthermore, the model quantitatively predicted the decline in baseline fluorescence that accompanied repeated photobleaching cycles in CHO cells expressing EGFP, supporting the hypothesis of fluorophore depletion as an alternative to the oft invoked ‘bound fraction’ explanation of the deviation of the terminal fluorescence recovery from its pre‐bleach baseline level. Nonetheless for their identical diffusive properties, advantages of PAGFP over EGFP were found, including an intrinsically higher signal/noise ratio with 488‐nm excitation, and the requirement for ∼1/200th the cumulative light energy to produce data of comparable signal/noise.


The Journal of General Physiology | 2012

Impact of signaling microcompartment geometry on GPCR dynamics in live retinal photoreceptors

Mehdi Najafi; Mohammad Haeri; Barry E. Knox; William E. Schiesser; Peter D. Calvert

G protein–coupled receptor (GPCR) cascades rely on membrane protein diffusion for signaling and are generally found in spatially constrained subcellular microcompartments. How the geometry of these microcompartments impacts cascade activities, however, is not understood, primarily because of the inability of current live cell–imaging technologies to resolve these small structures. Here, we examine the dynamics of the GPCR rhodopsin within discrete signaling microcompartments of live photoreceptors using a novel high resolution approach. Rhodopsin fused to green fluorescent protein variants, either enhanced green fluorescent protein (EGFP) or the photoactivatable PAGFP (Rho-E/PAGFP), was expressed transgenically in Xenopus laevis rod photoreceptors, and the geometries of light signaling microcompartments formed by lamellar disc membranes and their incisure clefts were resolved by confocal imaging. Multiphoton fluorescence relaxation after photoconversion experiments were then performed with a Ti–sapphire laser focused to the diffraction limit, which produced small sub–cubic micrometer volumes of photoconverted molecules within the discrete microcompartments. A model of molecular diffusion was developed that allows the geometry of the particular compartment being examined to be specified. This was used to interpret the experimental results. Using this unique approach, we showed that rhodopsin mobility across the disc surface was highly heterogeneous. The overall relaxation of Rho-PAGFP fluorescence photoactivated within a microcompartment was biphasic, with a fast phase lasting several seconds and a slow phase of variable duration that required up to several minutes to reach equilibrium. Local Rho-EGFP diffusion within defined compartments was monotonic, however, with an effective lateral diffusion coefficient Dlat = 0.130 ± 0.012 µm2s−1. Comparison of rhodopsin-PAGFP relaxation time courses with model predictions revealed that microcompartment geometry alone may explain both fast local rhodopsin diffusion and its slow equilibration across the greater disc membrane. Our approach has for the first time allowed direct examination of GPCR dynamics within a live cell signaling microcompartment and a quantitative assessment of the impact of compartment geometry on GPCR activity.


Vision Research | 2012

Transport and localization of signaling proteins in ciliated cells

Mehdi Najafi; Peter D. Calvert

Most cells in the human body elaborate cilia which serve a wide variety of functions, including cell and tissue differentiation during development, sensing physical and chemical properties of the extracellular milieu and mechanical force generation. Common among cilia is the transduction of external stimuli into signals that regulate the activities of the cilia and the cells that possess them. These functions require the transport and localization of specialized proteins to the cilium, a process that many recent studies have shown to be vital for normal cell function and, ultimately, the health of the organism. Here we discuss several mechanisms proposed for the transport and localization of soluble and peripheral membrane proteins to, or their exclusion from the ciliary compartment with a focus on how the structure of the cytoplasm and the size and shape of proteins influence these processes. Additionally, we examine the impact of cell and protein structure on our ability to accurately measure the relative concentrations of fluorescently tagged proteins amongst various cellular domains, which is integral to our understanding of the molecular mechanisms underlying protein localization and transport.


Advances in Experimental Medicine and Biology | 2002

The Time Course of Light Adaptation in Vertebrate Retinal Rods

Peter D. Calvert; Clint L. Makino

The photoresponse of a rod wanes over time in steady illumination, as light loses its efficacy in generating the response. Such desensitization is adaptive because it extends the range of ambient light levels over which the rod signals changes in light intensity by several orders of magnitude. Adaptation begins to unfold rapidly after the onset of light with a time constant of approximately 1 s, causing the rods sensitivity to steady light to decrease by nearly two log units. Thereafter, a much slower phase of adaptation evolves with a time constant of 9 s. During this phase the rods sensitivity decreases by an additional log unit. Both phases are dependent upon the light-induced fall in intracellular Ca2+. The fast phase of light adaptation can be attributed to Ca2+ feedback processes regulating the lifetime ofphotoactivated rhodopsin, cGMP synthesis and sensitivity of the cGMP-gated channel to cGMP. Although the mechanism(s) of the slow phase is not yet known, it appears to include further regulation of the lifetime of photoactivated rhodopsin.


PLOS ONE | 2013

Regulation of Rhodopsin-eGFP Distribution in Transgenic Xenopus Rod Outer Segments by Light

Mohammad Haeri; Peter D. Calvert; Eduardo Solessio; Edward N. Pugh; Barry E. Knox

The rod outer segment (OS), comprised of tightly stacked disk membranes packed with rhodopsin, is in a dynamic equilibrium governed by a diurnal rhythm with newly synthesized membrane inserted at the OS base balancing membrane loss from the distal tip via disk shedding. Using transgenic Xenopus and live cell confocal imaging, we found OS axial variation of fluorescence intensity in cells expressing a fluorescently tagged rhodopsin transgene. There was a light synchronized fluctuation in intensity, with higher intensity in disks formed at night and lower intensity for those formed during the day. This fluctuation was absent in constant light or dark conditions. There was also a slow modulation of the overall expression level that was not synchronized with the lighting cycle or between cells in the same retina. The axial variations of other membrane-associated fluorescent proteins, eGFP-containing two geranylgeranyl acceptor sites and eGFP fused to the transmembrane domain of syntaxin, were greatly reduced or not detectable, respectively. In acutely light-adapted rods, an arrestin-eGFP fusion protein also exhibited axial variation. Both the light-sensitive Rho-eGFP and arrestin-eGFP banding were in phase with the previously characterized birefringence banding (Kaplan, Invest. Ophthalmol. Vis. Sci. 21, 395–402 1981). In contrast, endogenous rhodopsin did not exhibit such axial variation. Thus, there is an axial inhomogeneity in membrane composition or structure, detectable by the rhodopsin transgene density distribution and regulated by the light cycle, implying a light-regulated step for disk assembly in the OS. The impact of these results on the use of chimeric proteins with rhodopsin fused to fluorescent proteins at the carboxyl terminus is discussed.

Collaboration


Dive into the Peter D. Calvert's collaboration.

Top Co-Authors

Avatar

Edward N. Pugh

University of California

View shared research outputs
Top Co-Authors

Avatar

Clint L. Makino

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Barry E. Knox

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Mehdi Najafi

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Ivayla I. Geneva

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Mohammad Haeri

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alvina Bragin

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Arkady Lyubarsky

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge