Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergej Skosyrski is active.

Publication


Featured researches published by Sergej Skosyrski.


Molecular and Cellular Biology | 2007

Targeted Disruption of the Murine Retinal Dehydrogenase Gene Rdh12 Does Not Limit Visual Cycle Function

Ingo Kurth; Debra A. Thompson; Klaus Rüther; Kecia L. Feathers; J. D. Chrispell; Jana Schroth; Christina L. McHenry; Michaela Schweizer; Sergej Skosyrski; Andreas Gal; Christian A. Hübner

ABSTRACT RDH12 codes for a member of the family of short-chain alcohol dehydrogenases/reductases proposed to function in the visual cycle that supplies the chromophore 11-cis retinal to photoreceptor cells. Mutations in RDH12 cause severe and progressive childhood onset autosomal-recessive retinal dystrophy, including Leber congenital amaurosis. We generated Rdh12 knockout mice, which exhibited grossly normal retinal histology at 10 months of age. Levels of all-trans and 11-cis retinoids in dark- and light-adapted animals and scotopic and photopic electroretinogram (ERG) responses were similar to those for the wild type, as was recovery of the ERG response following bleaching, for animals matched for an Rpe65 polymorphism (p.L450M). Lipid peroxidation products and other measures of oxidative stress did not appear to be elevated in Rdh12−/− animals. RDH12 was localized to photoreceptor inner segments and the outer nuclear layer in both mouse and human retinas by immunohistochemistry. The present findings, together with those of earlier studies showing only minor functional deficits in mice deficient for Rdh5, Rdh8, or Rdh11, suggest that the activity of any one isoform is not rate limiting in the visual response.


PLOS ONE | 2012

Large-Scale Phenotyping of an Accurate Genetic Mouse Model of JNCL Identifies Novel Early Pathology Outside the Central Nervous System

John F. Staropoli; Larissa Haliw; Sunita Biswas; Lillian Garrett; Sabine M. Hölter; Lore Becker; Sergej Skosyrski; Patricia da Silva-Buttkus; Julia Calzada-Wack; Frauke Neff; Birgit Rathkolb; Jan Rozman; Anja Schrewe; Thure Adler; Oliver Puk; Minxuan Sun; Jack Favor; Ildiko Racz; Raffi Bekeredjian; Dirk H. Busch; Jochen Graw; Martin Klingenspor; Thomas Klopstock; Eckhard Wolf; Wolfgang Wurst; Andreas Zimmer; Edith Lopez; Hayat Harati; Eric Hill; Daniela S. Krause

Cln3Δex7/8 mice harbor the most common genetic defect causing juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive disease involving seizures, visual, motor and cognitive decline, and premature death. Here, to more thoroughly investigate the manifestations of the common JNCL mutation, we performed a broad phenotyping study of Cln3Δex7/8 mice. Homozygous Cln3Δex7/8 mice, congenic on a C57BL/6N background, displayed subtle deficits in sensory and motor tasks at 10–14 weeks of age. Homozygous Cln3Δex7/8 mice also displayed electroretinographic changes reflecting cone function deficits past 5 months of age and a progressive decline of retinal post-receptoral function. Metabolic analysis revealed increases in rectal body temperature and minimum oxygen consumption in 12–13 week old homozygous Cln3Δex7/8mice, which were also seen to a lesser extent in heterozygous Cln3Δex7/8 mice. Heart weight was slightly increased at 20 weeks of age, but no significant differences were observed in cardiac function in young adults. In a comprehensive blood analysis at 15–16 weeks of age, serum ferritin concentrations, mean corpuscular volume of red blood cells (MCV), and reticulocyte counts were reproducibly increased in homozygous Cln3 Δ ex7/8 mice, and male homozygotes had a relative T-cell deficiency, suggesting alterations in hematopoiesis. Finally, consistent with findings in JNCL patients, vacuolated peripheral blood lymphocytes were observed in homozygous Cln3 Δ ex7/8 neonates, and to a greater extent in older animals. Early onset, severe vacuolation in clear cells of the epididymis of male homozygous Cln3 Δ ex7/8 mice was also observed. These data highlight additional organ systems in which to study CLN3 function, and early phenotypes have been established in homozygous Cln3 Δ ex7/8 mice that merit further study for JNCL biomarker development.


Investigative Ophthalmology & Visual Science | 2010

Cone versus Rod Disease in a Mutant Rpgr Mouse Caused by Different Genetic Backgrounds

Sandra Brunner; Sergej Skosyrski; Renate Kirschner-Schwabe; Klaus-Peter Knobeloch; John Neidhardt; Silke Feil; Esther Glaus; Ulrich F.O. Luhmann; Klaus Rüther; Wolfgang Berger

PURPOSE To establish mouse models for RPGR-associated diseases by generating and characterizing an Rpgr mutation (in-frame deletion of exon 4) in two different genetic backgrounds (BL/6 and BALB/c). METHODS Gene targeting in embryonic stem (ES) cells was performed to introduce a in-frame deletion of exon 4 in the Rpgr gene (Rpgr(DeltaEx4)). Subsequently, the mutation was introduced in two different inbred mouse strains by successive breeding. Mutant and wild-type mice of both strains were characterized by electroretinography (ERG) and histology at five time points (1, 3, 6, 9, and 12 months). RPGR transcript amounts were assessed by quantitative RT-PCR. A variety of photoreceptor proteins, including RPGR-ORF15, RPGRIP, PDE6delta/PrBPdelta, rhodopsin, and cone opsin, were localized on retinal sections by immunohistochemistry. RESULTS Mislocalization of rhodopsin and cone opsin was an early pathologic event in mutant mice of both lines. In contrast, RPGR-ORF15 as well as RPGRIP1 and PDE6delta/PrBPdelta showed similar localizations in mutant and wild-type animals. Functional and histologic studies revealed a mild rod-dominated phenotype in mutant male mice on the BL/6 background, whereas a cone-dominated phenotype was observed for the same mutation in the BALB/c background. CONCLUSIONS Both Rpgr mutant mouse lines developed retinal disease with a striking effect of the genetic background. Cone-specific modifiers might influence the retinal phenotype in the BALB/c strain. The two lines provide models to study RPGR function in rods and cones, respectively.


Cellular Signalling | 2014

Calcium regulation by temperature-sensitive transient receptor potential channels in human uveal melanoma cells

Stefan Mergler; Raissa Derckx; Peter S. Reinach; Fabian Garreis; Arina Böhm; Lisa Schmelzer; Sergej Skosyrski; Niraja Ramesh; Suzette Abdelmessih; Onur Kerem Polat; Noushafarin Khajavi; Aline I. Riechardt

Uveal melanoma (UM) is both the most common and fatal intraocular cancer among adults worldwide. As with all types of neoplasia, changes in Ca(2+) channel regulation can contribute to the onset and progression of this pathological condition. Transient receptor potential channels (TRPs) and cannabinoid receptor type 1 (CB1) are two different types of Ca(2+) permeation pathways that can be dysregulated during neoplasia. We determined in malignant human UM and healthy uvea and four different UM cell lines whether there is gene and functional expression of TRP subtypes and CB1 since they could serve as drug targets to either prevent or inhibit initiation and progression of UM. RT-PCR, Ca(2+) transients, immunohistochemistry and planar patch-clamp analysis probed for their gene expression and functional activity, respectively. In UM cells, TRPV1 and TRPM8 gene expression was identified. Capsaicin (CAP), menthol or icilin induced Ca(2+) transients as well as changes in ion current behavior characteristic of TRPV1 and TRPM8 expression. Such effects were blocked with either La(3+), capsazepine (CPZ) or BCTC. TRPA1 and CB1 are highly expressed in human uvea, but TRPA1 is not expressed in all UM cell lines. In UM cells, the CB1 agonist, WIN 55,212-2, induced Ca(2+) transients, which were suppressed by La(3+) and CPZ whereas CAP-induced Ca(2+) transients could also be suppressed by CB1 activation. Identification of functional TRPV1, TRPM8, TRPA1 and CB1 expression in these tissues may provide novel drug targets for treatment of this aggressive neoplastic disease.


Scientific Reports | 2016

Lack of netrin-4 modulates pathologic neovascularization in the eye

Norbert Kociok; Sergio Crespo-Garcia; Y. Liang; Sabrina Klein; Christina Nürnberg; Nadine Reichhart; Sergej Skosyrski; Eva Moritz; Anna-Karina B. Maier; William J. Brunken; Olaf Strauß; Manuel Koch; Antonia M. Joussen

Netrins are a family of matrix-binding proteins that function as guidance signals. Netrin-4 displays pathologic roles in tumorigenesis and neovascularization. To answer the question whether netrin-4 acts either pro- or anti-angiogenic, angiogenesis in the retina was assessed in Ntn-4−/− mice with oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (CNV), mimicking hypoxia-mediated neovascularization and inflammatory mediated angiogenesis. The basement membrane protein netrin-4 was found to be localised to mature retinal blood vessels. Netrin-4, but not netrin-1 mRNA expression, increased in response to relative hypoxia and recovered to normal levels at the end of blood vessel formation. No changes in the retina were found in normoxic Ntn-4−/− mice. In OIR, Ntn-4−/− mice initially displayed larger avascular areas which recovered faster to revascularization. Ganzfeld electroretinography showed faster recovery of retinal function in Ntn-4−/− mice. Expression of netrin receptors, Unc5H2 (Unc-5 homolog B, C. elegans) and DCC (deleted in colorectal carcinoma), was found in Müller cells and astrocytes. Laser-induced neovascularization in Nnt-4−/− mice did not differ to that in the controls. Our results indicate a role for netrin-4 as an angiogenesis modulating factor in O2-dependent vascular homeostasis while being less important during normal retinal developmental angiogenesis or during inflammatory neovascularization.


Investigative Ophthalmology & Visual Science | 2013

Multifocal ERG Recordings Under Visual Control of the Stimulated Fundus in Mice

Ralf M. Dutescu; Sergej Skosyrski; Norbert Kociok; Irina Semkova; Stefan Mergler; Jenny Atorf; Antonia M. Joussen; Olaf Strauß; Jan Kremers

PURPOSE Therapeutic approaches to retinal disease require a continuous monitoring of functional improvement over lesion areas that sometimes cannot be shown in full-field ERG. The aim of this study was to assess the usefulness of multifocal electroretinograms (mfERGs) under visual control using scanning laser ophthalmoscopy (SLO) for evaluation of local retinopathy in mice. METHODS mfERGs were optimized for recordings in C57BL/6 mice by varying dark steps between each stimuli, background intensity, and the numbers of hexagons. Local retinopathy was induced by argon laser photocoagulation with different spot sizes and retinal irradiances. mfERG recordings were performed before, and 10 days and 4 weeks after laser treatment. In each recording, the central hexagon was positioned on the optic nerve head visualized by SLO images. The amplitudes of the P1 response components were analyzed as a function of retinal location. RESULTS The mfERG amplitudes depended on stimulus condition. The P1 amplitudes increased with increasing number of dark frames in the m-sequence and with decreasing number of hexagons. A stimulus with 19 hexagons and four dark frames was chosen because substantial response amplitudes could be achieved while preserving sufficient spatial resolution. In the untreated eyes, the response to the central hexagon, stimulating the optic nerve head, was smaller than those to the surrounding hexagons. The responses to hexagons stimulating photocoagulated areas were reduced compared with the responses of surrounding areas. The amplitude reduction was more pronounced when the coagulated areas were larger and when higher energies were used. CONCLUSIONS Areas with decreased sensitivities to light stimulation (either the optic nerve head or damaged retinal areas) can be detected and correlated with the retinal images and in the mfERG responses. We demonstrate that the mfERG technique is able to reproducibly detect the functional consequences of a local treatment.


Clinical Science | 2016

Hypertensive retinopathy in a transgenic angiotensin-based model

Nadine Reichhart; Nadine Haase; Sergio Crespo-Garcia; Sergej Skosyrski; Christina Herrspiegel; Norbert Kociok; Rudolf Fuchshofer; Andrea Elisabeth Dillinger; Marco Poglitsch; Dominik N. Müller; Antonia M. Joussen; Friedrich C. Luft; Ralf Dechend; Olaf Strauß

Severe hypertension destroys eyesight. The RAS (renin-angiotensin system) may contribute to this. This study relied on an established angiotensin, AngII (angiotensin II)-elevated dTGR (double-transgenic rat) model and same-background SD (Sprague-Dawley) rat controls. In dTGRs, plasma levels of AngII were increased. We determined the general retinal phenotype and observed degeneration of ganglion cells that we defined as vascular degeneration. We also inspected relevant gene expression and lastly observed alterations in the outer blood-retinal barrier. We found that both scotopic a-wave and b-wave as well as oscillatory potential amplitude were significantly decreased in dTGRs, compared with SD rat controls. However, the b/a-wave ratio remained unchanged. Fluorescence angiography of the peripheral retina indicated that exudates, or fluorescein leakage, from peripheral vessels were increased in dTGRs compared with controls. Immunohistological analysis of blood vessels in retina whole-mount preparations showed structural alterations in the retina of dTGRs. We then determined the general retinal phenotype. We observed the degeneration of ganglion cells, defined vascular degenerations and finally found differential expression of RAS-related genes and angiogenic genes. We found the expression of both human angiotensinogen and human renin in the hypertensive retina. Although the renin gene expression was not altered, the AngII levels in the retina were increased 4-fold in the dTGR retina compared with that in SD rats, a finding with mechanistic implications. We suggest that alterations in the outer blood-retinal barrier could foster an area of visual-related research based on our findings. Finally, we introduce the dTGR model of retinal disease.


PLOS ONE | 2018

Correction: Individual and temporal variability of the retina after chronic bilateral common carotid artery occlusion (BCCAO)

Sergio Crespo-Garcia; Nadine Reichhart; Sergej Skosyrski; Marco Foddis; Jim Zhen Wu; Aleksandar Figura; Christina Herrspiegel; Martina Füchtemeier; Celeste Sassi; Ulrich Dirnagl; Antonia M. Joussen; Olaf Strauss

Animal models of disease are an indispensable element in our quest to understand pathophysiology and develop novel therapies. Ex vivo studies have severe limitations, in particular their inability to study individual disease progression over time. In this respect, non-invasive in vivo technologies offer multiple advantages. We here used bilateral common carotid artery occlusion (BCCAO) in mice, an established model for ischemic retinopathy, and performed a multimodal in vivo and ex vivo follow-up. We used scanning laser ophthalmoscopy (SLO), ocular coherence tomography (OCT) and electroretinography (ERG) over 6 weeks followed by ex vivo analyses. BCCAO leads to vascular remodeling with thickening of veins starting at 4 weeks, loss of photoreceptor synapses with concomitant reduced b-waves in the ERG and thinning of the retina. Mononuclear phagocytes showed fluctuation of activity over time. There was large inter-individual variation in the severity of neuronal degeneration and cellular inflammatory responses. Ex vivo analysis confirmed these variable features of vascular remodeling, neurodegeneration and inflammation. In summary, we conclude that multimodal follow-up and subgroup analysis of retinal changes in BCCAO further calls into question the use of ex vivo studies with distinct single end-points. We propose that our approach can foster the understanding of retinal disease as well as the clinical translation of emerging therapeutic strategies.


Investigative Ophthalmology & Visual Science | 2006

Structural and Functional Abnormalities of Retinal Ribbon Synapses due to Cacna2d4 Mutation

Wycisk K; Birgit Budde; Silke Feil; Sergej Skosyrski; Francesca Buzzi; John Neidhardt; Esther Glaus; Peter Nürnberg; Klaus Ruether; Wolfgang Berger


Experimental Eye Research | 2012

Altered calcium regulation by thermosensitive transient receptor potential channels in etoposide-resistant WERI-Rb1 retinoblastoma cells

Stefan Mergler; Y Cheng; Sergej Skosyrski; Fabian Garreis; P Pietrzak; Norbert Kociok; A Dwarakanath; Peter S. Reinach; Kakkassery

Collaboration


Dive into the Sergej Skosyrski's collaboration.

Researchain Logo
Decentralizing Knowledge