Sergey A. Akimov
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergey A. Akimov.
Cell | 2008
Pavel Bashkirov; Sergey A. Akimov; Alexey I. Evseev; Sandra L. Schmid; Joshua Zimmerberg; Vadim A. Frolov
The GTPase dynamin is critically involved in membrane fission during endocytosis. How does dynamin use the energy of GTP hydrolysis for membrane remodeling? By monitoring the ionic permeability through lipid nanotubes (NT), we found that dynamin was capable of squeezing NT to extremely small radii, depending on the NT lipid composition. However, long dynamin scaffolds did not produce fission: instead, fission followed GTPase-dependent cycles of assembly and disassembly of short dynamin scaffolds and involved a stochastic process dependent on the curvature stress imposed by dynamin. Fission happened spontaneously upon NT release from the scaffold, without leakage. Our calculations revealed that local narrowing of NT could induce cooperative lipid tilting, leading to self-merger of the inner monolayer of NT (hemifission), consistent with the absence of leakage. We propose that dynamin transmits GTPs energy to periodic assembling of a limited curvature scaffold that brings lipids to an unstable intermediate.
Science | 2013
Anna V. Shnyrova; Pavel Bashkirov; Sergey A. Akimov; Thomas J. Pucadyil; Joshua Zimmerberg; Sandra L. Schmid; Vadim A. Frolov
Making the Cut Dynamin is the prototypical member of a large family of structurally related guanosine triphosphatases involved in membrane fission and fusion. A variety of models have been suggested to explain how dynamin works. Shnyrova et al. (p. 1433; see the Perspective by Holz) reconstituted dynamin-mediated membrane scission on lipid nanotubes and suggest a molecular model for dynamin activity that takes into consideration all known aspects of dynamin function. Guanosine triphosphate hydrolysis limits polymerization of the membrane protein dynamin on lipid nanotubes into short, metastable collars. [Also see Perspective by Holz] Biological membrane fission requires protein-driven stress. The guanosine triphosphatase (GTPase) dynamin builds up membrane stress by polymerizing into a helical collar that constricts the neck of budding vesicles. How this curvature stress mediates nonleaky membrane remodeling is actively debated. Using lipid nanotubes as substrates to directly measure geometric intermediates of the fission pathway, we found that GTP hydrolysis limits dynamin polymerization into short, metastable collars that are optimal for fission. Collars as short as two rungs translated radial constriction to reversible hemifission via membrane wedging of the pleckstrin homology domains (PHDs) of dynamin. Modeling revealed that tilting of the PHDs to conform with membrane deformations creates the low-energy pathway for hemifission. This local coordination of dynamin and lipids suggests how membranes can be remodeled in cells.
Nature Structural & Molecular Biology | 2006
Joshua Zimmerberg; Sergey A. Akimov; Vadim A. Frolov
Two recent studies focusing on synaptotagmin-1s role in synaptic vesicle fusion suggest that it may be key in bringing vesicle and target membranes together and in promoting SNARE assembly. The highly positive electrostatic potential of the synaptotagmin surface could catalyze fusion.
Science Advances | 2015
Andreas Horner; Florian Zocher; Johannes Preiner; Nicole Ollinger; Christine Siligan; Sergey A. Akimov; Peter Pohl
Mobility of single-file water molecules determined by H-bonds. Channel geometry governs the unitary osmotic water channel permeability, pf, according to classical hydrodynamics. Yet, pf varies by several orders of magnitude for membrane channels with a constriction zone that is one water molecule in width and four to eight molecules in length. We show that both the pf of those channels and the diffusion coefficient of the single-file waters within them are determined by the number NH of residues in the channel wall that may form a hydrogen bond with the single-file waters. The logarithmic dependence of water diffusivity on NH is in line with the multiplicity of binding options at higher NH densities. We obtained high-precision pf values by (i) having measured the abundance of the reconstituted aquaporins in the vesicular membrane via fluorescence correlation spectroscopy and via high-speed atomic force microscopy, and (ii) having acquired the vesicular water efflux from scattered light intensities via our new adaptation of the Rayleigh-Gans-Debye equation.
Biochimica et Biophysica Acta | 2017
Eduard V. Bocharov; Konstantin S. Mineev; Konstantin V. Pavlov; Sergey A. Akimov; Andrey S. Kuznetsov; Roman G. Efremov; Alexander S. Arseniev
Interaction between transmembrane helices often determines biological activity of membrane proteins. Bitopic proteins, a broad subclass of membrane proteins, form dimers containing two membrane-spanning helices. Some aspects of their structure-function relationship cannot be fully understood without considering the protein-lipid interaction, which can determine the protein conformational ensemble. Experimental and computer modeling data concerning transmembrane parts of bitopic proteins are reviewed in the present paper. They highlight the importance of lipid-protein interactions and resolve certain paradoxes in the behavior of such proteins. Besides, some properties of membrane organization provided a clue to understanding of allosteric interactions between distant parts of proteins. Interactions of these kinds appear to underlie a signaling mechanism, which could be widely employed in the functioning of many membrane proteins. Treatment of membrane proteins as parts of integrated fine-tuned proteolipid system promises new insights into biological function mechanisms and approaches to drug design. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Biochemistry (moscow) Supplement Series A: Membrane and Cell Biology | 2009
Sergey A. Akimov; E. A. Hlaponin; Pavel Bashkirov; Ivan A. Boldyrev; I. I. Mikhalyov; W. G. Telford; I. M. Molotkovskaya
Gangliosides are significant participants in suppression of immune system during tumor processes. It was shown that they can induce apoptosis of T-lymphocytes in a raft-dependent manner. Fluorescence confocal microscopy was used to study distribution and influence of ganglioside GM1 on raft properties in giant unilamellar vesicles. Both raft and non-raft phase markers were utilized. No visible phase separation was observed without GM1 unless lateral tension was applied to the membrane. At 2 mol % of GM1 large domains appeared indicating macroscopic phase separation. Increase of GM1 content to 5 mol % resulted in shape transformation of the domains consistent with growth of line tension at the domain boundary. At 10 mol % of GM1 almost all domains were pinched out from vesicles, forming their own homogeneous liposomes. Estimations showed that the change of the GM1 content from 2 to 5–10 mol % resulted in a several-fold increase of line tension. This finding provides a possible mechanism of apoptosis induction by GM1. Incorporation of GM1 into a membrane leads to an increase of the line tension. This results in a growth of the average size of rafts due to coalescence or merger of small domains. Thus, necessary proteins can find themselves in one common raft and start the corresponding cascade of reactions.
Chemistry and Physics of Lipids | 2015
Vadim A. Frolov; Artur Escalada; Sergey A. Akimov; Anna V. Shnyrova
Cellular membranes define the functional geometry of intracellular space. Formation of new membrane compartments and maintenance of complex organelles require division and disconnection of cellular membranes, a process termed membrane fission. Peripheral membrane proteins generally control membrane remodeling during fission. Local membrane stresses, reflecting molecular geometry of membrane-interacting parts of these proteins, sum up to produce the key membrane geometries of fission: the saddle-shaped neck and hour-glass hemifission intermediate. Here, we review the fundamental principles behind the translation of molecular geometry into membrane shape and topology during fission. We emphasize the central role the membrane insertion of specialized protein domains plays in orchestrating fission in vitro and in cells. We further compare individual to synergistic action of the membrane insertion during fission mediated by individual protein species, proteins complexes or membrane domains. Finally, we describe how local geometry of fission intermediates defines the functional design of the protein complexes catalyzing fission of cellular membranes.
Jetp Letters | 2013
Timur R. Galimzyanov; R. J. Molotkovsky; B. B. Kheyfets; Sergey A. Akimov
Specific domains, called rafts, are formed in cell membranes. Similar lipid domains can be formed in model membranes as a result of phase separation with raft size may remaining small (∼10–100 nm) for a long time. The characteristic lifetime of a nanoraft ensemble strongly depends on the nature of mutual raft interactions. The interaction energy between the boundaries of two rafts has been calculated under the assumption that the thickness of the raft bilayer is greater than that of the surrounding membrane, and elastic deformations appear in order to smooth the thickness mismatch at the boundary. When rafts approach each other, deformations from their boundaries overlap, making interaction energy profile sophisticated. It has been shown that raft merger occurs in two stages: rafts first merge in one monolayer of the lipid bilayer and then in another monolayer. Each merger stage requires overcoming of an energy barrier of about 0.08–0.12 kBT per 1 nm of boundary length. These results allow us to explain the stability of the ensemble of finite sized rafts.
Scientific Reports | 2017
Sergey A. Akimov; Pavel E. Volynsky; Timur R. Galimzyanov; Peter I. Kuzmin; Konstantin V. Pavlov; Oleg V. Batishchev
Lipid membranes serve as effective barriers allowing cells to maintain internal composition differing from that of extracellular medium. Membrane permeation, both natural and artificial, can take place via appearance of transversal pores. The rearrangements of lipids leading to pore formation in the intact membrane are not yet understood in details. We applied continuum elasticity theory to obtain continuous trajectory of pore formation and closure, and analyzed molecular dynamics trajectories of pre-formed pore reseal. We hypothesized that a transversal pore is preceded by a hydrophobic defect: intermediate structure spanning through the membrane, the side walls of which are partially aligned by lipid tails. This prediction was confirmed by our molecular dynamics simulations. Conversion of the hydrophobic defect into the hydrophilic pore required surmounting some energy barrier. A metastable state was found for the hydrophilic pore at the radius of a few nanometers. The dependence of the energy on radius was approximately quadratic for hydrophobic defect and small hydrophilic pore, while for large radii it depended on the radius linearly. The pore energy related to its perimeter, line tension, thus depends of the pore radius. Calculated values of the line tension for large pores were in quantitative agreement with available experimental data.
Biochemistry (moscow) Supplement Series A: Membrane and Cell Biology | 2011
Pavel Bashkirov; K. V. Chekashkina; Sergey A. Akimov; P. I. Kuzmin; Vadim A. Frolov
Dynamic coupling between the morphology and molecular composition of cellular membranes is crucial for formation of the intracellular organelles and transport vesicles. Most of the membrane proteins and lipids discriminate membrane curvatures. However, it remains unclear whether the curvature alone is sufficient to support heterogeneous distribution of lipids. Here we demonstrate that the curvature-driven redistribution of phospholipids, such as dioleoylphosphatidylethanolamine (DOPE), requires strong membrane bending. We used cylindrical lipid nanotubes (NTs) pulled from planar lipid membranes with lateral tension of ∼1 dyn/cm. Such high tensions forced extreme curvatures of the NT membrane, with luminal radius approaching the thickness of the lipid bilayer, 5nm. When the NT contained lipid species with high spontaneous curvature (SC), such as DOPE, we observed slow reduction of its radius. This reduction indicated the redistribution of DOPE between the inner and outer monolayers of the NT. Accordingly, the SC of DOPE was recovered from the measured changes in the radii: the SC value, calculated under the assumption that the DOPE content is coupled to the monolayer curvature, was ∼0.4 nm−1, consistent with the published data. Thus, redistribution of lipids should be taken into account in calculations of composition and material properties of strongly deformed membrane structures, such as intermediate structures arising in the processes of membrane fusion and fission.