Oleg V. Batishchev
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Oleg V. Batishchev.
PLOS ONE | 2011
Brigitte M. Krenn; Andrej Egorov; Ekaterina Romanovskaya-Romanko; Markus Wolschek; Sabine Nakowitsch; Tanja Ruthsatz; Bettina Kiefmann; Alexander Morokutti; Johannes Humer; Janina Geiler; Jindrich Cinatl; Martin Michaelis; Nina Wressnigg; Sanda Sturlan; Boris Ferko; Oleg V. Batishchev; Andrey V. Indenbom; Rong Zhu; Markus Kastner; Peter Hinterdorfer; Oleg I. Kiselev; Thomas Muster; Julia Romanova
Background H5N1 influenza vaccines, including live intranasal, appear to be relatively less immunogenic compared to seasonal analogs. The main influenza virus surface glycoprotein hemagglutinin (HA) of highly pathogenic avian influenza viruses (HPAIV) was shown to be more susceptible to acidic pH treatment than that of human or low pathogenic avian influenza viruses. The acidification machinery of the human nasal passageway in response to different irritation factors starts to release protons acidifying the mucosal surface (down to pH of 5.2). We hypothesized that the sensitivity of H5 HA to the acidic environment might be the reason for the low infectivity and immunogenicity of intranasal H5N1 vaccines for mammals. Methodology/Principal Findings We demonstrate that original human influenza viruses infect primary human nasal epithelial cells at acidic pH (down to 5.4), whereas H5N1 HPAIVs lose infectivity at pH≤5.6. The HA of A/Vietnam/1203/04 was modified by introducing the single substitution HA2 58K→I, decreasing the pH of the HA conformational change. The H5N1 reassortants containing the indicated mutation displayed an increased resistance to acidic pH and high temperature treatment compared to those lacking modification. The mutation ensured a higher viral uptake as shown by immunohistochemistry in the respiratory tract of mice and 25 times lower mouse infectious dose50. Moreover, the reassortants keeping 58K→I mutation designed as a live attenuated vaccine candidate lacking an NS1 gene induced superior systemic and local antibody response after the intranasal immunization of mice. Conclusion/Significance Our finding suggests that an efficient intranasal vaccination with a live attenuated H5N1 virus may require a certain level of pH and temperature stability of HA in order to achieve an optimal virus uptake by the nasal epithelial cells and induce a sufficient immune response. The pH of the activation of the H5 HA protein may play a substantial role in the infectivity of HPAIVs for mammals.
PLOS ONE | 2013
Eleonora V. Shtykova; L. A. Baratova; Natalia V. Fedorova; Victor A. Radyukhin; Alexander L. Ksenofontov; V. V. Volkov; Alexander V. Shishkov; Alexey A. Dolgov; Liudmila A. Shilova; Oleg V. Batishchev; Cy M. Jeffries; Dmitri I. Svergun
Influenza A virus matrix protein M1 is one of the most important and abundant proteins in the virus particles broadly involved in essential processes of the viral life cycle. The absence of high-resolution data on the full-length M1 makes the structural investigation of the intact protein particularly important. We employed synchrotron small-angle X-ray scattering (SAXS), analytical ultracentrifugation and atomic force microscopy (AFM) to study the structure of M1 at acidic pH. The low-resolution structural models built from the SAXS data reveal a structurally anisotropic M1 molecule consisting of a compact NM-fragment and an extended and partially flexible C-terminal domain. The M1 monomers co-exist in solution with a small fraction of large clusters that have a layered architecture similar to that observed in the authentic influenza virions. AFM analysis on a lipid-like negatively charged surface reveals that M1 forms ordered stripes correlating well with the clusters observed by SAXS. The free NM-domain is monomeric in acidic solution with the overall structure similar to that observed in previously determined crystal structures. The NM-domain does not spontaneously self assemble supporting the key role of the C-terminus of M1 in the formation of supramolecular structures. Our results suggest that the flexibility of the C-terminus is an essential feature, which may be responsible for the multi-functionality of the entire protein. In particular, this flexibility could allow M1 to structurally organise the viral membrane to maintain the integrity and the shape of the intact influenza virus.
Bioelectrochemistry | 2008
Oleg V. Batishchev; Andrey V. Indenbom
Formation of bilayer lipid membrane (BLM) by Montal-Mueller technique across a small aperture in a partition film traditionally requires coating of the aperture with a hydrophobic substance, often just an organic solvent. However, we demonstrate here that the most effective coating is not strictly hydrophobic but rather provides water/oil repellent properties. BLM were formed from diphytanoylphosphatidylcholine (DPhPC) on small 0.1-0.8 mm apertures made in specially prepared alkylated glass coverslips. The coverslips were either fluorosiliconized by 3,3,3-Trifluoropropyl-trimethoxysilane, which reduces adsorption of DPhPC in addition to creation of hydrophobic surface, or silanized, which promote adsorption of DPhPC. At fluorosiliconized surfaces stable BLM were formed. Specific capacitance of these BLM was 0.86 microF/cm(2)+/-5%, while their lateral tension was estimated as 4.3+/-0.4 mN/m. BLM were stable for hours under moderate voltage applied. At silanized surfaces stable BLM were formed only in acidic medium (3 <pH <4), while at higher pH the membranes could cover the aperture only partially. Thus, apertures in fluorosiliconized glass can be robustly used for formation of model lipid membranes under physiological conditions.
Journal of Virology | 2016
Oleg V. Batishchev; Liudmila A. Shilova; M. V. Kachala; Vsevolod Yu Tashkin; Valerij S. Sokolov; Natalia V. Fedorova; Liudmila A. Baratova; D. G. Knyazev; Joshua Zimmerberg; Yury A. Chizmadzhev
ABSTRACT Influenza virus is taken up from a pH-neutral extracellular milieu into an endosome, whose contents then acidify, causing changes in the viral matrix protein (M1) that coats the inner monolayer of the viral lipid envelope. At a pH of ∼6, M1 interacts with the viral ribonucleoprotein (RNP) in a putative priming stage; at this stage, the interactions of the M1 scaffold coating the lipid envelope are intact. The M1 coat disintegrates as acidification continues to a pH of ∼5 to clear a physical path for the viral genome to transit from the viral interior to the cytoplasm. Here we investigated the physicochemical mechanism of M1s pH-dependent disintegration. In neutral media, the adsorption of M1 protein on the lipid bilayer was electrostatic in nature and reversible. The energy of the interaction of M1 molecules with each other in M1 dimers was about 10 times as weak as that of the interaction of M1 molecules with the lipid bilayer. Acidification drives conformational changes in M1 molecules due to changes in the M1 charge, leading to alterations in their electrostatic interactions. Dropping the pH from 7.1 to 6.0 did not disturb the M1 layer; dropping it lower partially desorbed M1 because of increased repulsion between M1 monomers still stuck to the membrane. Lipid vesicles coated with M1 demonstrated pH-dependent rupture of the vesicle membrane, presumably because of the tension generated by this repulsive force. Thus, the disruption of the vesicles coincident with M1 protein scaffold disintegration at pH 5 likely stretches the lipid membrane to the point of rupture, promoting fusion pore widening for RNP release. IMPORTANCE Influenza remains a top killer of human beings throughout the world, in part because of the influenza viruss rapid binding to cells and its uptake into compartments hidden from the immune system. To attack the influenza virus during this time of hiding, we need to understand the physical forces that allow the internalized virus to infect the cell. In particular, we need to know how the protective coat of protein inside the viral surface reacts to the changes in acid that come soon after internalization. We found that acid makes the molecules of the protein coat push each other while they are still stuck to the virus, so that they would like to rip the membrane apart. This ripping force is known to promote membrane fusion, the process by which infection actually occurs.
Scientific Reports | 2017
Sergey A. Akimov; Pavel E. Volynsky; Timur R. Galimzyanov; Peter I. Kuzmin; Konstantin V. Pavlov; Oleg V. Batishchev
Lipid membranes serve as effective barriers allowing cells to maintain internal composition differing from that of extracellular medium. Membrane permeation, both natural and artificial, can take place via appearance of transversal pores. The rearrangements of lipids leading to pore formation in the intact membrane are not yet understood in details. We applied continuum elasticity theory to obtain continuous trajectory of pore formation and closure, and analyzed molecular dynamics trajectories of pre-formed pore reseal. We hypothesized that a transversal pore is preceded by a hydrophobic defect: intermediate structure spanning through the membrane, the side walls of which are partially aligned by lipid tails. This prediction was confirmed by our molecular dynamics simulations. Conversion of the hydrophobic defect into the hydrophilic pore required surmounting some energy barrier. A metastable state was found for the hydrophilic pore at the radius of a few nanometers. The dependence of the energy on radius was approximately quadratic for hydrophobic defect and small hydrophilic pore, while for large radii it depended on the radius linearly. The pore energy related to its perimeter, line tension, thus depends of the pore radius. Calculated values of the line tension for large pores were in quantitative agreement with available experimental data.
Scientific Reports | 2017
Sergey A. Akimov; Pavel E. Volynsky; Timur R. Galimzyanov; Peter I. Kuzmin; Konstantin V. Pavlov; Oleg V. Batishchev
Lipid membranes are extremely stable envelopes allowing cells to survive in various environments and to maintain desired internal composition. Membrane permeation through formation of transversal pores requires substantial external stress. Practically, pores are usually formed by application of lateral tension or transmembrane voltage. Using the same approach as was used for obtaining continuous trajectory of pore formation in the stress-less membrane in the previous article, we now consider the process of pore formation under the external stress. The waiting time to pore formation proved a non-monotonous function of the lateral tension, dropping from infinity at zero tension to a minimum at the tension of several millinewtons per meter. Transmembrane voltage, on the contrary, caused the waiting time to decrease monotonously. Analysis of pore formation trajectories for several lipid species with different spontaneous curvatures and elastic moduli under various external conditions provided instrumental insights into the mechanisms underlying some experimentally observed phenomena.
Biochemistry (moscow) Supplement Series A: Membrane and Cell Biology | 2014
Sergey A. Akimov; R. J. Molotkovsky; Timur R. Galimzyanov; A. V. Radaev; L. A. Shilova; P. I. Kuzmin; Oleg V. Batishchev; G. F. Voronina; Yu. A. Chizmadzhev
We consider the process of fusion of lipid membranes from the stage of stalk with minimal radius to the stage of fusion pore. We assume that stalk directly developed into the fusion pore, omitting the stage of hemifusion diaphragm. Energy of intermediate stages is calculated on the basis of the classical elasticity theory of liquid crystals adapted for lipid membranes. The trajectory of transition from stalk to pore is obtained with regard to hydrophobic and hydration interactions. Continuous change of orientation of lipids in distal monolayers occurs along the trajectory. The orientation changes from the direction along rotational axis of the system specific to stalk to the direction corresponding to the fusion pore. Dependence of energy of intermediate stages on the value of spontaneous curvature of distal monolayers of the fusing membranes is obtained. We demonstrate that the energy barrier of the stalk-to-pore transition decreases when distal monolayers have positive spontaneous curvature, which is in accordance with available experimental data.
Advances on Planar Lipid Bilayers and Liposomes | 2013
Natalia Marukovich; Mark McMurray; Olga Finogenova; Alexey M. Nesterenko; Oleg V. Batishchev; Yury A. Ermakov
Abstract The topic correlates electrostatic effects induced by polylysine (PL) adsorption at the lipid membrane surface with data of alternative methods sensitive to lipid bilayer structure. Comparison of electrokinetic data for liposomes from anionic lipids (cardiolipin, phosphatidylserine) and results of boundary potential (BP) measurements with lipid membranes shows effects in two opposite directions: fast positive changes of BP due to adsorption of polycations at the outer membrane surface and slow negative changes that can be attributed to alteration of the dipole component of BP. The latter effect does not depend on the polymer length and may be caused by lipid interaction with lysine as a basic unit of these polypeptides. Molecular dynamic simulation points out the possible mechanism of the dipole effect, which could be caused by reduced number of H-bonds to PO 4 groups upon the lysine adsorption. Atomic force microscopy visualized the geometry of clusters formed by PL of different lengths at the lipid bilayer. Isotherm titration calorimetry and the technique of lipid monolayers reveal the similarity in polypeptide and inorganic multivalent cation effects on the lateral lipid condensation accompanied by dipole effects.The topic correlates electrostatic effects induced by polylysine (PL) adsorption at the lipid membrane surface with data of alternative methods sensitive to lipid bilayer structure. Comparison of electrokinetic data for liposomes from anionic lipids (cardiolipin, phosphatidylserine) and results of boundary potential (BP) measurements with lipid membranes shows effects in two opposite directions: fast positive changes of BP due to adsorption of polycations at the outer membrane surface and slow negative changes that can be attributed to alteration of the dipole component of BP. The latter effect does not depend on the polymer length and may be caused by lipid interaction with lysine as a basic unit of these polypeptides. Molecular dynamic simulation points out the possible mechanism of the dipole effect, which could be caused by reduced number of H-bonds to PO4 groups upon the lysine adsorption. Atomic force microscopy visualized the geometry of clusters formed by PL of different lengths at the lipid bilayer. Isotherm titration calorimetry and the technique of lipid monolayers reveal the similarity in polypeptide and inorganic multivalent cation effects on the lateral lipid condensation accompanied by dipole effects.
Scientific Reports | 2017
Eleonora V. Shtykova; Liubov A. Dadinova; Natalia V. Fedorova; Andrey E. Golanikov; Elena N. Bogacheva; Alexander L. Ksenofontov; Liudmila A. Baratova; Liudmila A. Shilova; Vsevolod Yu Tashkin; Timur R. Galimzyanov; Cy M. Jeffries; Dmitri I. Svergun; Oleg V. Batishchev
Influenza A virus matrix protein M1 plays an essential role in the virus lifecycle, but its functional and structural properties are not entirely defined. Here we employed small-angle X-ray scattering, atomic force microscopy and zeta-potential measurements to characterize the overall structure and association behavior of the full-length M1 at different pH conditions. We demonstrate that the protein consists of a globular N-terminal domain and a flexible C-terminal extension. The globular N-terminal domain of M1 monomers appears preserved in the range of pH from 4.0 to 6.8, while the C-terminal domain remains flexible and the tendency to form multimers changes dramatically. We found that the protein multimerization process is reversible, whereby the binding between M1 molecules starts to break around pH 6. A predicted electrostatic model of M1 self-assembly at different pH revealed a good agreement with zeta-potential measurements, allowing one to assess the role of M1 domains in M1-M1 and M1-lipid interactions. Together with the protein sequence analysis, these results provide insights into the mechanism of M1 scaffold formation and the major role of the flexible and disordered C-terminal domain in this process.
International Journal of Molecular Sciences | 2017
R. J. Molotkovsky; Timur R. Galimzyanov; Irene Jiménez-Munguía; Konstantin V. Pavlov; Oleg V. Batishchev; Sergey A. Akimov
Fusion of cellular membranes during normal biological processes, including proliferation, or synaptic transmission, is mediated and controlled by sophisticated protein machinery ensuring the preservation of the vital barrier function of the membrane throughout the process. Fusion of virus particles with host cell membranes is more sparingly arranged and often mediated by a single fusion protein, and the virus can afford to be less discriminative towards the possible different outcomes of fusion attempts. Formation of leaky intermediates was recently observed in some fusion processes, and an alternative trajectory of the process involving formation of π-shaped structures was suggested. In this study, we apply the methods of elasticity theory and Lagrangian formalism augmented by phenomenological and molecular geometry constraints and boundary conditions to investigate the traits of this trajectory and the drivers behind the choice of one of the possible scenarios depending on the properties of the system. The alternative pathway proved to be a dead end, and, depending on the parameters of the participating membranes and fusion proteins, the system can either reversibly enter the corresponding “leaky” configuration or be trapped in it. A parametric study in the biologically relevant range of variables emphasized the fusion protein properties crucial for the choice of the fusion scenario.