Sergey B. Zotchev
University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergey B. Zotchev.
PLOS ONE | 2016
Oksana Bilyk; Olga N. Sekurova; Sergey B. Zotchev; Andriy Luzhetskyy
Transformation-associated recombination (TAR) in yeast is a rapid and inexpensive method for cloning and assembly of large DNA fragments, which relies on natural homologous recombination. Two vectors, based on p15a and F-factor replicons that can be maintained in yeast, E. coli and streptomycetes have been constructed. These vectors have been successfully employed for assembly of the grecocycline biosynthetic gene cluster from Streptomyces sp. Acta 1362. Fragments of the cluster were obtained by PCR and transformed together with the “capture” vector into the yeast cells, yielding a construct carrying the entire gene cluster. The obtained construct was heterologously expressed in S. albus J1074, yielding several grecocycline congeners. Grecocyclines have unique structural moieties such as a dissacharide side chain, an additional amino sugar at the C-5 position and a thiol group. Enzymes from this pathway may be used for the derivatization of known active angucyclines in order to improve their desired biological properties.
Microbial Cell Factories | 2016
Olga N. Sekurova; Jianhai Zhang; Kåre A. Kristiansen; Sergey B. Zotchev
BackgroundStreptomyces venezuelae ATCC 10712 produces antibiotics chloramphenicol (Cml) and jadomycin (Jad) in response to nutrient limitation and ethanol shock (ES), respectively. Biosynthesis of Cml and Jad was shown to be reciprocally regulated via the action of regulatory proteins JadR1 and JadR2 encoded by the jad cluster, and mechanism of such regulation has been characterized. However, detailed analysis of the regulatory mechanism controlling Cml biosynthesis is still lacking.ResultsIn the present study, several promoters from the cml cluster were fused to the reporter gene gusA. Reporter protein activity and Cml production were assayed in the wild-type strain with and without ES, followed by similar experiments with the jadR1 deletion mutant. The latter gene was earlier reported to negatively control Cml biosynthesis, while serving as a positive regulator for the jad cluster. A double deletion mutant deficient in both jadR1 and the cml cluster was also constructed and used in promoter fusion studies. Analyses of the results revealed that ES activates Cml biosynthesis in both wild-type and jadR1 deletion mutant, while Cml production by the latter was ca 80xa0% lower.ConclusionsThese results contradict earlier reports regarding the function of JadR1, but correlate well with the reporter activity data for some promoters, while reaction of others to the ES is genotype-dependent. Remarkably, the absence of Cml production in the double mutant has a profound effect on the way certain cml promoters react to ES. The latter suggests direct involvement of Cml in this complex regulatory mechanism.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2017
Imen Nouioui; Christian Rückert; Joost Willemse; Gilles P. van Wezel; Hans-Peter Klenk; Tobias Busche; Jörn Kalinowski; Harald Bredholt; Sergey B. Zotchev
Two actinobacterial strains, ADI 127-17T and GBA 129-24, isolated from marine sponges Antho dichotoma and Geodia barretti, respectively, collected at the Trondheim fjord in Norway, were the subjects of a polyphasic study. According to their 16S rRNA gene sequences, the new isolates were preliminarily classified as belonging to the genus Actinoalloteichus. Both strains formed a distinct branch, closely related to the type strains of Actinoalloteichus hoggarensis and Actinoalloteichus hymeniacidonis, within the evolutionary radiation of the genus Actinoalloteichus in the 16S rRNA gene-based phylogenetic tree. Isolates ADI 127-17T and GBA 129-24 exhibited morphological, chemotaxonomic and genotypic features distinguishable from their close phylogenetic neighbours. Digital DNA: DNA hybridization and ANI values between strains ADI 127-17T and GBA 129-24 were 97.6 and 99.7%, respectively, whereas the corresponding values between both tested strains and type strains of their closely related phylogenetic neighbours, A. hoggarensis and A. hymeniacidonis, were well below the threshold for delineation of prokaryotic species. Therefore, strains ADI 127-17T (=xa0DSM 46855T) and GBA 129-24 (=xa0DSM 46856) are concluded to represent a novel species of the genus Actinoalloteichus for which the name of Actinoalloteichus fjordicus sp. nov. (type strain ADI 127-17Txa0=xa0DSM 46855Txa0=xa0CECT 9355T) is proposed. The complete genome sequences of the new strains were obtained and compared to that of A. hymeniacidonis DSM 45092T and A. hoggarensis DSM 45943T to unravel unique genome features and biosynthetic potential of the new isolates.
Standards in Genomic Sciences | 2016
Lena Schaffert; Andreas Albersmeier; Anika Winkler; Jörn Kalinowski; Sergey B. Zotchev; Christian Rückert
Actinoalloteichus hymeniacidonis HPA 177T is a Gram-positive, strictly aerobic, black pigment producing and spore-forming actinomycete, which forms branching vegetative hyphae and was isolated from the marine sponge Hymeniacidon perlevis.Actinomycete bacteria are prolific producers of secondary metabolites, some of which have been developed into anti-microbial, anti-tumor and immunosuppressive drugs currently used in human therapy. Considering this and the growing interest in natural products as sources of new drugs, actinomycete bacteria from the hitherto poorly explored marine environments may represent promising sources for drug discovery.As A. hymeniacidonis, isolated from the marine sponge, is a type strain of the recently described and rare genus Actinoalloteichus, knowledge of the complete genome sequence enables genome analyses to identify genetic loci for novel bioactive compounds. This project, describing the 6.31xa0Mbp long chromosome, with its 5346 protein-coding and 73 RNA genes, will aid the Genomic Encyclopedia of Bacteria and Archaea project.
Scientific Reports | 2018
Jimmy Mevaere; Christophe Goulard; Olha Schneider; Olga N. Sekurova; Haiyan Ma; Séverine Zirah; Carlos Afonso; Sylvie Rebuffat; Sergey B. Zotchev; Yanyan Li
Lasso peptides are ribosomally synthesized and post-translationally modified peptides produced by bacteria. They are characterized by an unusual lariat-knot structure. Targeted genome scanning revealed a wide diversity of lasso peptides encoded in actinobacterial genomes, but cloning and heterologous expression of these clusters turned out to be problematic. To circumvent this, we developed an orthogonal expression system for heterologous production of actinobacterial lasso peptides in Streptomyces hosts based on a newly-identified regulatory circuit from Actinoalloteichus fjordicus. Six lasso peptide gene clusters, mainly originating from marine Actinobacteria, were chosen for proof-of-concept studies. By varying the Streptomyces expression hosts and a small set of culture conditions, three new lasso peptides were successfully produced and characterized by tandem MS. The newly developed expression system thus sets the stage to uncover and bioengineer the chemo-diversity of actinobacterial lasso peptides. Moreover, our data provide some considerations for future bioprospecting efforts for such peptides.
Frontiers in Microbiology | 2018
Olha Schneider; Tatjana Ilic-Tomic; Christian Rückert; Jörn Kalinowski; Marija S. Genčić; Milena Živković; Nada Stankovic; Niko S. Radulović; Branka Vasiljevic; Jasmina Nikodinovic-Runic; Sergey B. Zotchev
Streptomyces sp. NP10 was previously shown to synthesize large amounts of free fatty acids (FFAs). In this work, we report the first insights into the biosynthesis of these fatty acids (FAs) gained after genome sequencing and identification of the genes involved. Analysis of the Streptomyces sp. NP10 draft genome revealed that it is closely related to several strains of Streptomyces griseus. Comparative analyses of secondary metabolite biosynthetic gene clusters, as well as those presumably involved in FA biosynthesis, allowed identification of an unusual cluster C12-2, which could be identified in only one other S. griseus-related streptomycete. To prove the involvement of identified cluster in FFA biosynthesis, one of its three ketosynthase genes was insertionally inactivated to generate mutant strain mNP10. Accumulation of FFAs in mNP10 was almost completely abolished, reaching less than 0.01% compared to the wild-type strain. Cloning and transfer of the C12-2 cluster to the mNP10 mutant partially restored FFA production, albeit to a low level. The discovery of this rare FFA biosynthesis cluster opens possibilities for detailed characterization of the roles of individual genes and their products in the biosynthesis of FFAs in NP10.
Frontiers in Microbiology | 2018
Moges Kibret; Jaime F. Guerrero-Garzón; Ernst Urban; Martin Zehl; Valerie-Katharina Wronski; Christian Rückert; Tobias Busche; Jörn Kalinowski; Judith M. Rollinger; Dawit Abate; Sergey B. Zotchev
A total of 416 actinomycete cultures were isolated from various unique environments in Ethiopia and tested for bioactivity. Six isolates with pronounced antimicrobial activity were chosen for taxonomic identification and further investigation. Morphological and cultural properties of the isolates were found to be consistent with those of the genus Streptomyces, which was further confirmed by phylogenetic analysis based on 16S rRNA gene sequences. One of the isolates, designated Streptomyces sp. Go-475, which displayed potent activity against both pathogenic yeasts and Gram-positive bacteria, was chosen for further investigation. Metabolite profiles and bioactivity of Go-475 incubated on wheat bran-based solid and soya flour-based liquid media were compared using high-resolution LC-MS. This allowed identification of several known compounds, and suggested the ability of Go-475 to produce new secondary metabolites. Major anti-bacterial compounds were purified from liquid cultures of Go-475, and their structures elucidated by NMR and HRMS as 8-O-methyltetrangomycin and 8-O-methyltetrangulol. In addition, many potentially novel metabolites were detected, the majority of which were produced in solid media-based fermentation. The genome sequence of Streptomyces sp. Go-475 was obtained using a hybrid assembly approach of high quality Illumina short read and low quality Oxford Nanopore long read data. The complete linear chromosome of 8,570,609 bp, featuring a G+C content of 71.96%, contains 7,571 predicted coding sequences, 83 t(m)RNA genes, and six rrn operons. Analysis of the genome for secondary metabolite biosynthesis gene clusters further confirmed potential of this isolate to synthesize chemically diverse natural products, and allowed to connect certain clusters with experimentally confirmed molecules.
Archive | 2001
Trygve Brautaset; Trond Erling Ellingsen; Espen Fjaervik; Ole-Martin Gulliksen; Olga N. Sekurova; H Vard Sletta; Arne Reidar Stroem; Svein Valla; Sergey B. Zotchev
Archive | 2008
Sergey B. Zotchev; Sven Even Finn Borgos; Trygve Brautaset; Trond Erling Ellingsen; Evgenia N. Olsufyeva; M. N. Preobrazhenskaya; Håvard Sletta
Archive | 2010
Sergey B. Zotchev; Olga N. Sekurova; Espen Fjaervik; Trygve Brautaset; Arne R. Strøm; Svein Valla; Trond Erling Ellingsen; Håvard Sletta; Ole-Martin Gulliksen