Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Håvard Sletta is active.

Publication


Featured researches published by Håvard Sletta.


Chemistry & Biology | 2000

Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455: analysis of the gene cluster and deduction of the biosynthetic pathway

Trygve Brautaset; Olga N. Sekurova; Håvard Sletta; Trond E. Ellingsen; Arne R. Strøm; Svein Valla; Sergey B. Zotchev

BACKGROUND The polyene macrolide antibiotic nystatin produced by Streptomyces noursei ATCC 11455 is an important antifungal agent. The nystatin molecule contains a polyketide moiety represented by a 38-membered macrolactone ring to which the deoxysugar mycosamine is attached. Molecular cloning and characterization of the genes governing the nystatin biosynthesis is of considerable interest because this information can be used for the generation of new antifungal antibiotics. RESULTS A DNA region of 123,580 base pairs from the S. noursei ATCC 11455 genome was isolated, sequenced and shown by gene disruption to be involved in nystatin biosynthesis. Analysis of the DNA sequence resulted in identification of six genes encoding a modular polyketide synthase (PKS), genes for thioesterase, deoxysugar biosynthesis, modification, transport and regulatory proteins. One of the PKS-encoding genes, nysC, was found to encode the largest (11,096 amino acids long) modular PKS described to date. Analysis of the deduced gene products allowed us to propose a model for the nystatin biosynthetic pathway in S. noursei. CONCLUSIONS A complete set of genes responsible for the biosynthesis of the antifungal polyene antibiotic nystatin in S. noursei ATCC 11455 has been cloned and analyzed. This represents the first example of the complete DNA sequence analysis of a polyene antibiotic biosynthetic gene cluster. Manipulation of the genes identified within the cluster may potentially lead to the generation of novel polyketides and yield improvements in the production strains.


BMC Genomics | 2010

The dynamic architecture of the metabolic switch in Streptomyces coelicolor

Kay Nieselt; Florian Battke; Alexander Herbig; Per Bruheim; Alexander Wentzel; Øyvind Mejdell Jakobsen; Håvard Sletta; Mohammad T. Alam; Maria Elena Merlo; Jonathan D. Moore; Walid A.M. Omara; Edward R. Morrissey; Miguel A. Juarez-Hermosillo; Antonio Rodríguez-García; Merle Nentwich; Louise Thomas; Mudassar Iqbal; Roxane Legaie; William H. Gaze; Gregory L. Challis; Ritsert C. Jansen; Lubbert Dijkhuizen; David A. Rand; David L. Wild; Michael Bonin; Jens Reuther; Wolfgang Wohlleben; Margaret C. M. Smith; Nigel John Burroughs; Juan F. Martín

BackgroundDuring the lifetime of a fermenter culture, the soil bacterium S. coelicolor undergoes a major metabolic switch from exponential growth to antibiotic production. We have studied gene expression patterns during this switch, using a specifically designed Affymetrix genechip and a high-resolution time-series of fermenter-grown samples.ResultsSurprisingly, we find that the metabolic switch actually consists of multiple finely orchestrated switching events. Strongly coherent clusters of genes show drastic changes in gene expression already many hours before the classically defined transition phase where the switch from primary to secondary metabolism was expected. The main switch in gene expression takes only 2 hours, and changes in antibiotic biosynthesis genes are delayed relative to the metabolic rearrangements. Furthermore, global variation in morphogenesis genes indicates an involvement of cell differentiation pathways in the decision phase leading up to the commitment to antibiotic biosynthesis.ConclusionsOur study provides the first detailed insights into the complex sequence of early regulatory events during and preceding the major metabolic switch in S. coelicolor, which will form the starting point for future attempts at engineering antibiotic production in a biotechnological setting.


Journal of Bacteriology | 2003

The Pseudomonas fluorescens AlgG Protein, but Not Its Mannuronan C-5-Epimerase Activity, Is Needed for Alginate Polymer Formation

Martin Gimmestad; Håvard Sletta; Helga Ertesvåg; Karianne Bakkevig; Sumita Jain; Sang-Jin Suh; Gudmund Skjåk-Bræk; Trond E. Ellingsen; Dennis E. Ohman; Svein Valla

Bacterial alginates are produced as 1-4-linked beta-D-mannuronan, followed by epimerization of some of the mannuronic acid residues to alpha-L-guluronic acid. Here we report the isolation of four different epimerization-defective point mutants of the periplasmic Pseudomonas fluorescens mannuronan C-5-epimerase AlgG. All mutations affected amino acids conserved among AlgG-epimerases and were clustered in a part of the enzyme also sharing some sequence similarity to a group of secreted epimerases previously reported in Azotobacter vinelandii. An algG-deletion mutant was constructed and found to produce predominantly a dimer containing a 4-deoxy-L-erythro-hex-4-enepyranosyluronate residue at the nonreducing end and a mannuronic acid residue at the reducing end. The production of this dimer is the result of the activity of an alginate lyase, AlgL, whose in vivo activity is much more limited in the presence of AlgG. A strain expressing both an epimerase-defective (point mutation) and a wild-type epimerase was constructed and shown to produce two types of alginate molecules: one class being pure mannuronan and the other having the wild-type content of guluronic acid residues. This formation of two distinct classes of polymers in a genetically pure cell line can be explained by assuming that AlgG is part of a periplasmic protein complex.


Applied and Environmental Microbiology | 2010

Production of a New Thiopeptide Antibiotic, TP-1161, by a Marine Nocardiopsis Species

Kerstin Engelhardt; Kristin F. Degnes; Michael Kemmler; Harald Bredholt; Espen Fjærvik; Geir Klinkenberg; Håvard Sletta; Trond E. Ellingsen; Sergey B. Zotchev

ABSTRACT Twenty-seven marine sediment- and sponge-derived actinomycetes with a preference for or dependence on seawater for growth were classified at the genus level using molecular taxonomy. Their potential to produce bioactive secondary metabolites was analyzed by PCR screening for genes involved in polyketide and nonribosomal peptide antibiotic synthesis. Using microwell cultures, conditions for the production of antibacterial and antifungal compounds were identified for 15 of the 27 isolates subjected to this screening. Nine of the 15 active extracts were also active against multiresistant Gram-positive bacterial and/or fungal indicator organisms, including vancomycin-resistant Enterococcus faecium and multidrug-resistant Candida albicans. Activity-guided fractionation of fermentation extracts of isolate TFS65-07, showing strong antibacterial activity and classified as a Nocardiopsis species, allowed the identification and purification of the active compound. Structure elucidation revealed this compound to be a new thiopeptide antibiotic with a rare aminoacetone moiety. The in vitro antibacterial activity of this thiopeptide, designated TP-1161, against a panel of bacterial strains was determined.


Journal of Bacteriology | 2004

In Vivo Analysis of the Regulatory Genes in the Nystatin Biosynthetic Gene Cluster of Streptomyces noursei ATCC 11455 Reveals Their Differential Control Over Antibiotic Biosynthesis

Olga N. Sekurova; Trygve Brautaset; Håvard Sletta; Sven E. F. Borgos; Øyvind M. Jakobsen; Trond Erling Ellingsen; Arne R. Strøm; Svein Valla; Sergey B. Zotchev

Six putative regulatory genes are located at the flank of the nystatin biosynthetic gene cluster in Streptomyces noursei ATCC 11455. Gene inactivation and complementation experiments revealed that nysRI, nysRII, nysRIII, and nysRIV are necessary for efficient nystatin production, whereas no significant roles could be demonstrated for the other two regulatory genes. To determine the in vivo targets for the NysR regulators, chromosomal integration vectors with the xylE reporter gene under the control of seven putative promoter regions upstream of the nystatin structural and regulatory genes were constructed. Expression analyses of the resulting vectors in the S. noursei wild-type strain and regulatory mutants revealed that the four regulators differentially affect certain promoters. According to these analyses, genes responsible for initiation of nystatin biosynthesis and antibiotic transport were the major targets for regulation. Data from cross-complementation experiments showed that nysR genes could in some cases substitute for each other, suggesting a functional hierarchy of the regulators and implying a cascade-like mechanism of regulation of nystatin biosynthesis.


Applied and Environmental Microbiology | 2007

The Presence of N-Terminal Secretion Signal Sequences Leads to Strong Stimulation of the Total Expression Levels of Three Tested Medically Important Proteins during High-Cell-Density Cultivations of Escherichia coli

Håvard Sletta; Anne Tøndervik; Sigrid Hakvåg; T. E. Vee Aune; Aina Nedal; R. Aune; G. Evensen; Svein Valla; Trond E. Ellingsen; Trygve Brautaset

ABSTRACT Genetic optimizations to achieve high-level production of three different proteins of medical importance for humans, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon alpha 2b (IFN-α2b), and single-chain antibody variable fragment (scFv-phOx), were investigated during high-cell-density cultivations of Escherichia coli. All three proteins were poorly expressed when put under control of the strong Pm/xylS promoter/regulator system, but high volumetric yields of GM-CSF and scFv-phOx (up to 1.7 and 2.3 g/liter, respectively) were achieved when the respective genes were fused to a translocation signal sequence. The choice of signal sequence, pelB, ompA, or synthetic signal sequence CSP, displayed a high and specific impact on the total expression levels for these two proteins. Data obtained by quantitative PCR confirmed relatively high in vivo transcript levels without using a fused signal sequence, suggesting that the signal sequences mainly stimulate translation. IFN-α2b expression remained poor even when fused to a signal sequence, and an alternative IFN-α2b coding sequence that was optimized for effective expression in Escherichia coli was therefore synthesized. The total expression level of this optimized gene remained low, while high-level production (0.6 g/liter) was achieved when the gene was fused to a signal sequence. Together, our results demonstrate a critical role of signal sequences for achieving industrial level expression of three human proteins in E. coli under the conditions tested, and this effect has to our knowledge not previously been systematically investigated.


Journal of Bacteriology | 2004

AlgX Is a Periplasmic Protein Required for Alginate Biosynthesis in Pseudomonas aeruginosa

Antonette Robles-Price; Thiang Yian Wong; Håvard Sletta; Svein Valla; Neal L. Schiller

Alginate, an exopolysaccharide produced by Pseudomonas aeruginosa, provides the bacterium with a selective advantage that makes it difficult to eradicate from the lungs of cystic fibrosis (CF) patients. Previous studies identified a gene, algX, within the alginate biosynthetic gene cluster on the P. aeruginosa chromosome. By probing cell fractions with anti-AlgX antibodies in a Western blot, AlgX was localized within the periplasm. Consistent with these results is the presence of a 26-amino-acid signal sequence. To examine the requirement for AlgX in alginate biosynthesis, part of algX in P. aeruginosa strain FRD1::pJLS3 was replaced with a nonpolar gentamicin resistance cassette. The resulting algXDelta::Gm mutant was verified by PCR and Western blot analysis and was phenotypically nonmucoid (non-alginate producing). The algXDelta::Gm mutant was restored to the mucoid phenotype with wild-type P. aeruginosa algX provided on a plasmid. The algXDelta::Gm mutant was found to secrete dialyzable oligouronic acids of various lengths. Mass spectroscopy and Dionex chromatography indicated that the dialyzable uronic acids are mainly mannuronic acid dimers resulting from alginate lyase (AlgL) degradation of polymannuronic acid. These studies suggest that AlgX is part of a protein scaffold that surrounds and protects newly formed polymers from AlgL degradation as they are transported within the periplasm for further modification and eventual transport out of the cell.


Applied and Environmental Microbiology | 2004

Broad-Host-Range Plasmid pJB658 Can Be Used for Industrial-Level Production of a Secreted Host-Toxic Single-Chain Antibody Fragment in Escherichia coli

Håvard Sletta; Aina Nedal; Trond Erik Vee Aune; H. Hellebust; Sigrid Hakvåg; R. Aune; Trond E. Ellingsen; Svein Valla; Trygve Brautaset

ABSTRACT In industrial scale recombinant protein production it is often of interest to be able to translocate the product to reduce downstream costs, and heterologous proteins may require the oxidative environment outside of the cytoplasm for correct folding. High-level expression combined with translocation to the periplasm is often toxic to the host, and expression systems that can be used to fine-tune the production levels are therefore important. We previously constructed vector pJB658, which harbors the broad-host-range RK2 minireplicon and the inducible Pm/xylS promoter system, and we here explore the potential of this unique system to manipulate the expression and translocation of a host-toxic single-chain antibody variable fragment with affinity for hapten 2-phenyloxazol-5-one (phOx) (scFv-phOx). Fine-tuning of scFv-phOx levels was achieved by varying the concentrations of inducers and the vector copy number and also different signal sequences. Our data show that periplasmic accumulation of scFv-phOx leads to cell lysis, and we demonstrate the importance of controlled and high expression rates to achieve high product yields. By optimizing such parameters we show that soluble scFv-phOx could be produced to a high volumetric yield (1.2 g/liter) in high-cell-density cultures of Escherichia coli.


Journal of Bacteriology | 2005

Role of the Pseudomonas fluorescens Alginate Lyase (AlgL) in Clearing the Periplasm of Alginates Not Exported to the Extracellular Environment

Karianne Bakkevig; Håvard Sletta; Martin Gimmestad; Randi Aune; Helga Ertesvåg; Kristin F. Degnes; Bjørn E. Christensen; Trond E. Ellingsen; Svein Valla

Alginate is an industrially widely used polysaccharide produced by brown seaweeds and as an exopolysaccharide by bacteria belonging to the genera Pseudomonas and Azotobacter. The polymer is composed of the two sugar monomers mannuronic acid and guluronic acid (G), and in all these bacteria the genes encoding 12 of the proteins essential for synthesis of the polymer are clustered in the genome. Interestingly, 1 of the 12 proteins is an alginate lyase (AlgL), which is able to degrade the polymer down to short oligouronides. The reason why this lyase is associated with the biosynthetic complex is not clear, but in this paper we show that the complete lack of AlgL activity in Pseudomonas fluorescens in the presence of high levels of alginate synthesis is toxic to the cells. This toxicity increased with the level of alginate synthesis. Furthermore, alginate synthesis became reduced in the absence of AlgL, and the polymers contained much less G residues than in the wild-type polymer. To explain these results and other data previously reported in the literature, we propose that the main biological function of AlgL is to degrade alginates that fail to become exported out of the cell and thereby become stranded in the periplasmic space. At high levels of alginate synthesis in the absence of AlgL, such stranded polymers may accumulate in the periplasm to such an extent that the integrity of the cell is lost, leading to the observed toxic effects.


Microbiology | 2000

Identification of a gene cluster for antibacterial polyketide-derived antibiotic biosynthesis in the nystatin producer Streptomyces noursei ATCC 11455.

Sergey B. Zotchev; Kåre Haugan; Olga N. Sekurova; Håvard Sletta; Trond E. Ellingsen; Svein Valla

Streptomyces noursei ATCC 11455 produces the antifungal polyene antibiotic nystatin containing the deoxysugar moiety mycosamine. Part of the deoxythymidyl diphosphate (TDP)-glucose dehydratase gene (gdhA) known to be involved in deoxysugar biosynthesis was amplified by PCR from genomic DNA of S. noursei ATCC 11455. A gene library for S. noursei was made and screened with the gdhA probe. Several overlapping phage clones covering about 30 kb of the S. noursei genome were physically mapped. A partial DNA sequencing analysis of this region resulted in the identification of several putative genes typical of macrolide antibiotic biosynthetic gene clusters. A gene-transfer system for 5. noursei has been established, and gene deletion or disruption experiments within the putative biosynthetic gene cluster were performed. All of the knock-out mutants retained the ability to produce nystatin, suggesting that the identified gene cluster is not involved in biosynthesis of this antibiotic. Culture extracts from the wild-type strain and three knock-out mutants were analysed by TLC followed by a bioassay against Micrococcus luteus. Two antibacterial compounds were found to be synthesized by the wild-type strain while only one was produced by the mutants. This provided evidence for the involvement of the identified gene cluster in the biosynthesis of a presumably novel antibacterial macrolide antibiotic in S. noursei.

Collaboration


Dive into the Håvard Sletta's collaboration.

Top Co-Authors

Avatar

Svein Valla

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Trygve Brautaset

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sergey B. Zotchev

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Olga N. Sekurova

Norwegian University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge