Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergey G. Tarasov is active.

Publication


Featured researches published by Sergey G. Tarasov.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX

Marzena Pazgier; Min Liu; Guozhang Zou; Weirong Yuan; Changqing Li; Chong Li; Jing Li; Juahdi Monbo; Davide Zella; Sergey G. Tarasov; Wuyuan Lu

The oncoproteins MDM2 and MDMX negatively regulate the activity and stability of the tumor suppressor protein p53—a cellular process initiated by MDM2 and/or MDMX binding to the N-terminal transactivation domain of p53. MDM2 and MDMX in many tumors confer p53 inactivation and tumor survival, and are important molecular targets for anticancer therapy. We screened a duodecimal peptide phage library against site-specifically biotinylated p53-binding domains of human MDM2 and MDMX chemically synthesized via native chemical ligation, and identified several peptide inhibitors of the p53-MDM2/MDMX interactions. The most potent inhibitor (TSFAEYWNLLSP), termed PMI, bound to MDM2 and MDMX at low nanomolar affinities—approximately 2 orders of magnitude stronger than the wild-type p53 peptide of the same length (ETFSDLWKLLPE). We solved the crystal structures of synthetic MDM2 and MDMX, both in complex with PMI, at 1.6 Å resolution. Comparative structural analysis identified an extensive, tightened intramolecular H-bonding network in bound PMI that contributed to its conformational stability, thus enhanced binding to the 2 oncogenic proteins. Importantly, the C-terminal residue Pro of PMI induced formation of a hydrophobic cleft in MDMX previously unseen in the structures of p53-bound MDM2 or MDMX. Our findings deciphered the structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX, shedding new light on structure-based rational design of different classes of p53 activators for potential therapeutic use.


Molecular Cell | 2009

Allosteric Activation of E2-RING Finger-Mediated Ubiquitylation by a Structurally Defined Specific E2-Binding Region of gp78

Ranabir Das; Jennifer Mariano; Yien Che Tsai; Ravi C. Kalathur; Zlatka Kostova; Jess Li; Sergey G. Tarasov; Robert L. McFeeters; Amanda S. Altieri; Xinhua Ji; R. Andrew Byrd; Allan M. Weissman

The activity of RING finger ubiquitin ligases (E3) is dependent on their ability to facilitate transfer of ubiquitin from ubiquitin-conjugating enzymes (E2) to substrates. The G2BR domain within the E3 gp78 binds selectively and with high affinity to the E2 Ube2g2. Through structural and functional analyses, we determine that this occurs on a region of Ube2g2 distinct from binding sites for ubiquitin-activating enzyme (E1) and RING fingers. Binding to the G2BR results in conformational changes in Ube2g2 that affect ubiquitin loading. The Ube2g2:G2BR interaction also causes an approximately 50-fold increase in affinity between the E2 and RING finger. This results in markedly increased ubiquitylation by Ube2g2 and the gp78 RING finger. The significance of this G2BR effect is underscored by enhanced ubiquitylation observed when Ube2g2 is paired with other RING finger E3s. These findings uncover a mechanism whereby allosteric effects on an E2 enhance E2-RING finger interactions and, consequently, ubiquitylation.


Journal of Biological Chemistry | 2009

Engineered Human Antibody Constant Domains with Increased Stability

Rui Gong; Bang K. Vu; Yang Feng; DaRue A. Prieto; Marzena A. Dyba; Joseph D. Walsh; Ponraj Prabakaran; Timothy D. Veenstra; Sergey G. Tarasov; Rieko Ishima; Dimiter S. Dimitrov

The immunoglobulin (Ig) constant CH2 domain is critical for antibody effector functions. Isolated CH2 domains are promising as scaffolds for construction of libraries containing diverse binders that could also confer some effector functions. However, previous work has shown that an isolated murine CH2 domain is relatively unstable to thermally induced unfolding. To explore unfolding mechanisms of isolated human CH2 and increase its stability γ1 CH2 was cloned and a panel of cysteine mutants was constructed. Human γ1 CH2 unfolded at a higher temperature (Tm = 54.1 °C, as measured by circular dichroism) than that previously reported for a mouse CH2 (41 °C). One mutant (m01) was remarkably stable (Tm = 73.8 °C). Similar results were obtained by differential scanning calorimetry. This mutant was also significantly more stable than the wild-type CH2 against urea induced unfolding (50% unfolding at urea concentration of 6.8 m versus 4.2 m). The m01 was highly soluble and monomeric. The existence of the second disulfide bond in m01 and its correct position were demonstrated by mass spectrometry and nuclear magnetic resonance spectroscopy, respectively. The loops were on average more flexible than the framework in both CH2 and m01, and the overall secondary structure was not affected by the additional disulfide bond. These data suggest that a human CH2 domain is relatively stable to unfolding at physiological temperature, and that both CH2 and the highly stable mutant m01 are promising new scaffolds for the development of therapeutics against human diseases.


Journal of Biological Chemistry | 2012

Mechanisms of unphosphorylated STAT3 transcription factor binding to DNA

Olga Timofeeva; Sergey Chasovskikh; Irina Lonskaya; Nadya I. Tarasova; Lyuba Khavrutskii; Sergey G. Tarasov; Xueping Zhang; Valeriy R. Korostyshevskiy; Amrita K. Cheema; Lihua Zhang; Sivanesan Dakshanamurthy; Milton L. Brown; Anatoly Dritschilo

Background: Unphosphorylated STAT3 (U-STAT3) regulates gene expression, but the mechanisms of its DNA binding are not fully understood. Results: U-STAT3 binds to the same γ-activated sequence (GAS) DNA-binding site as phosphorylated STAT3. It also binds to AT-rich DNA structures. Conclusion: U-STAT3 regulates gene expression by binding to GAS and influencing chromatin organization. Significance: Our data provide an explanation of mechanisms of U-STAT3 binding to DNA. Phosphorylation of signal transducer and activator of transcription 3 (STAT3) on a single tyrosine residue in response to growth factors, cytokines, interferons, and oncogenes activates its dimerization, translocation to the nucleus, binding to the interferon γ (gamma)-activated sequence (GAS) DNA-binding site and activation of transcription of target genes. STAT3 is constitutively phosphorylated in various cancers and drives gene expression from GAS-containing promoters to promote tumorigenesis. Recently, roles for unphosphorylated STAT3 (U-STAT3) have been described in response to cytokine stimulation, in cancers, and in maintenance of heterochromatin stability. However, the mechanisms underlying U-STAT3 binding to DNA has not been fully investigated. Here, we explore STAT3-DNA interactions by atomic force microscopy (AFM) imaging. We observed that U-STAT3 molecules bind to the GAS DNA-binding site as dimers and monomers. In addition, we observed that U-STAT3 binds to AT-rich DNA sequence sites and recognizes specific DNA structures, such as 4-way junctions and DNA nodes, within negatively supercoiled plasmid DNA. These structures are important for chromatin organization and our data suggest a role for U-STAT3 as a chromatin/genome organizer. Unexpectedly, we found that a C-terminal truncated 67.5-kDa STAT3 isoform recognizes single-stranded spacers within cruciform structures that also have a role in chromatin organization and gene expression. This isoform appears to be abundant in the nuclei of cancer cells and, therefore, may have a role in regulation of gene expression. Taken together, our data highlight novel mechanisms by which U-STAT3 binds to DNA and supports U-STAT3 function as a transcriptional activator and a chromatin/genomic organizer.


Structure | 2015

GTP-Dependent K-Ras Dimerization

Serena Muratcioglu; Tanmay S. Chavan; Benjamin C. Freed; Hyunbum Jang; Lyuba Khavrutskii; R. Natasha Freed; Marzena A. Dyba; Karen Stefanisko; Sergey G. Tarasov; Attila Gursoy; Ozlem Keskin; Nadya I. Tarasova; Vadim Gaponenko; Ruth Nussinov

Ras proteins recruit and activate effectors, including Raf, that transmit receptor-initiated signals. Monomeric Ras can bind Raf; however, activation of Raf requires its dimerization. It has been suspected that dimeric Ras may promote dimerization and activation of Raf. Here, we show that the GTP-bound catalytic domain of K-Ras4B, a highly oncogenic splice variant of the K-Ras isoform, forms stable homodimers. We observe two major dimer interfaces. The first, highly populated β-sheet dimer interface is at the Switch I and effector binding regions, overlapping the binding surfaces of Raf, PI3K, RalGDS, and additional effectors. This interface has to be inhibitory to such effectors. The second, helical interface also overlaps the binding sites of some effectors. This interface may promote activation of Raf. Our data reveal how Ras self-association can regulate effector binding and activity, and suggest that disruption of the helical dimer interface by drugs may abate Raf signaling in cancer.


Science | 2016

Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome.

Yuan Shi; Xiang Chen; Suzanne Elsasser; Bradley B. Stocks; Geng Tian; Byung-Hoon Lee; Yanhong Shi; Naixia Zhang; Stefanie A. H. de Poot; Fabian Tuebing; Shuangwu Sun; Jacob Vannoy; Sergey G. Tarasov; John R. Engen; Daniel Finley; Kylie J. Walters

The yin and yang of proteasomal regulation The ubiquitin-proteasome pathway regulates myriad proteins through their selective proteolysis. The small protein ubiquitin is attached, typically in many copies, to the target protein, which is then recognized and broken down by the proteasome. Shi et al. found a repeat structure in the proteasome for recognizing ubiquitin as well as ubiquitin-like (UBL) proteins. Tandem binding sites allow the proteasome to dock multiple proteins. One of the bound UBL proteins is an enzyme that cleaves ubiquitin-protein conjugates, which antagonizes degradation. Thus, the repetition of related binding sites with distinct specificity achieves a balance of positive and negative regulation of the proteasome. Science, this issue p. 10.1126/science.aad9421 Tandem ligand-binding sites in the proteasome subunit Rpn1 modulate proteasome activity both positively and negatively. INTRODUCTION The ubiquitin-proteasome system comprises hundreds of distinct pathways of degradation, which converge at the step of ubiquitin recognition by the proteasome. Five proteasomal ubiquitin receptors have been identified, two that are intrinsic to the proteasome (Rpn10 and Rpn13) and three reversibly associated proteasomal ubiquitin receptors (Rad23, Dsk2, and Ddi1). RATIONALE We found that the five known proteasomal ubiquitin receptors of yeast are collectively nonessential for ubiquitin recognition by the proteasome. We therefore screened for additional ubiquitin receptors in the proteasome and identified subunit Rpn1 as a candidate. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the structure of the binding site within Rpn1, which we term the T1 site. Mutational analysis of this site showed its functional importance within the context of intact proteasomes. T1 binds both ubiquitin and ubiquitin-like (UBL) proteins, in particular the substrate-delivering shuttle factor Rad23. A second site within the Rpn1 toroid, T2, recognizes the UBL domain of deubiquitinating enzyme Ubp6, as determined by hydrogen-deuterium exchange mass spectrometry analysis and validated by amino acid substitution and functional assays. The Rpn1 toroid thus serves a critical scaffolding role within the proteasome, helping to assemble multiple proteasome cofactors, as well as substrates. RESULTS Our results indicate that proteasome subunit Rpn1 can recognize both ubiquitin and UBL domains of substrate shuttling factors that themselves bind ubiquitin and function as reversibly associated proteasomal ubiquitin receptors. Recognition is mediated by the T1 site within the Rpn1 toroid, which supports proteasome function in vivo. We found that the capacity of T1 to recognize both ubiquitin and UBL shuttling proteins was shared with Rpn10 and Rpn13. The surprising multiplicity of ubiquitin-recognition domains within the proteasome may promote enhanced, multipoint binding of ubiquitin chains. The structures of the T1 site in its free state and in complex with monoubiquitin or lysine 48 (K48)–linked diubiquitin were solved, which revealed that three neighboring outer helices from the T1 toroid engage two ubiquitins. This ubiquitin-binding domain is structurally distinct from those of Rpn10 and Rpn13, despite their common ligands. Moreover, the Rpn1-binding mode leads to a preference for certain ubiquitin chain types, especially K6- and K48-linked chains, in a distinct configuration that can position substrates close to the entry port of the proteasome. The fate of proteasome-docked ubiquitin conjugates is determined by a competition between substrate degradation and deubiquitination; the latter leads to premature release of substrates. Proximal to the T1 site within the Rpn1 toroid is a second UBL-binding site, T2, that does not assist in ubiquitin chain recognition but, rather, in chain disassembly, by binding to the UBL domain of deubiquitinating enzyme Ubp6. Note that the UBL interactors at T1 and T2 are distinct and assign substrate localization to T1 and substrate deubiquitination to T2. CONCLUSION A ligand-binding hotspot was identified in the Rpn1 toroid, consisting of two adjacent receptor sites, referred to as T1 and T2. The Rpn1 toroid represents a distinct class of binding domains for ubiquitin and UBL proteins. The T1 site functions to recruit substrates directly by binding to ubiquitin itself and indirectly by binding to UBL shuttling factors, a feature shared by Rpn10 and Rpn13 despite a lack of structural similarity among these receptors. The T2 site also binds to a UBL domain protein, in this case deubiquitinating enzyme Ubp6. This study thus defines a two-site recognition domain intrinsic to the proteasome that uses distinct ubiquitin-fold ligands to assemble substrates, substrate shuttling factors, and a deubiquitinating enzyme in close proximity. A ligand-binding hotspot in the proteasome for assembling substrates and cofactors. Schematic (top) and model structure (bottom, left) mapping the UBL-binding Rpn1 T1 (indigo) and T2 (orange) sites. (Bottom, right) Enlarged region of the proteasome designed to illustrate Rpn1 T1 and T2 sites bound to a ubiquitinated (yellow) substrate (beige) and deubiquitinating enzyme Ubp6 (green), respectively. Aided by PDB 4CR2, 1WGG, 1VJV, and 2B9R. Hundreds of pathways for degradation converge at ubiquitin recognition by a proteasome. Here, we found that the five known proteasomal ubiquitin receptors in yeast are collectively nonessential for ubiquitin recognition and identified a sixth receptor, Rpn1. A site (T1) in the Rpn1 toroid recognized ubiquitin and ubiquitin-like (UBL) domains of substrate shuttling factors. T1 structures with monoubiquitin or lysine 48 diubiquitin show three neighboring outer helices engaging two ubiquitins. T1 contributes a distinct substrate-binding pathway with preference for lysine 48–linked chains. Proximal to T1 within the Rpn1 toroid is a second UBL-binding site (T2) that assists in ubiquitin chain disassembly, by binding the UBL of deubiquitinating enzyme Ubp6. Thus, a two-site recognition domain intrinsic to the proteasome uses distinct ubiquitin-fold ligands to assemble substrates, shuttling factors, and a deubiquitinating enzyme.


Journal of Immunology | 2013

β-Defensin 2 and 3 Promote the Uptake of Self or CpG DNA, Enhance IFN-α Production by Human Plasmacytoid Dendritic Cells, and Promote Inflammation

Poonam Tewary; Gonzalo de la Rosa; Neeraj Sharma; Luis G. Rodriguez; Sergey G. Tarasov; O. M. Zack Howard; Hidekazu Shirota; Folkert Steinhagen; Dennis M. Klinman; De Yang; Joost J. Oppenheim

Alarmins are a group of structurally diverse host defense antimicrobial peptides that are important immune activators. In this article, we present a novel role for two potent alarmins, human β-defensin 2 and 3 (HBD2 and 3), in promoting IFN-α production by human plasmacytoid dendritic cells. We demonstrate that HBD2 and 3 activate pDCs by enhancing the intracellular uptake of CpG and self DNA and promote DNA-induced IFN-α production in a TLR9-dependent manner. Both CpG and host DNA form aggregates that resemble DNA nets when combined with HBD2 and 3. Isothermal titration calorimetry studies to elucidate the nature of HBD3/CpG complexes demonstrate involvement of enthalpy-driven interactions, in addition to hydrophobic interactions, with the formation of complexes at a molar ratio of 2:1 defensin/CpG. The i.v. administration of HBD3/CpG complexes induced proinflammatory cytokines like IL-12, IFN-γ, IL-6, IFN-α, and IL-10 in serum, associated with an increased recruitment of APCs in the spleen. Subcutaneous injections of these complexes showed enhanced infiltration of inflammatory cells at the injection site, indicating a potential pathophysiological role for alarmin/DNA complexes in contributing to inflammation. Intraperitoneal immunization of HBD3/CpG complexes with OVA enhanced both cellular and humoral responses to OVA, compared with OVA/HBD3 or OVA/CPG alone, indicative of a much more potent adjuvant effect of the HBD3/CpG complexes. Thus, the ability of defensins to enhance cellular uptake of nucleic acids can lead to improved vaccine formulations by promoting their uptake by various cells, resulting in an enhanced immune response.


Nature | 2017

Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography.

Jason R. Stagno; Yongmei Liu; Y. R. Bhandari; Chelsie E. Conrad; S. Panja; M. Swain; L. Fan; Garrett Nelson; Chufeng Li; D. R. Wendel; Thomas A. White; Jesse Coe; Max O. Wiedorn; Juraj Knoška; Dominik Oberthuer; R. A. Tuckey; P. Yu; M. Dyba; Sergey G. Tarasov; Uwe Weierstall; Thomas D. Grant; Charles D. Schwieters; Junmei Zhang; Adrian R. Ferré-D'Amaré; Petra Fromme; D. E. Draper; Mengning Liang; Mark S. Hunter; Sébastien Boutet; K. Tan

Riboswitches are structural RNA elements that are generally located in the 5′ untranslated region of messenger RNA. During regulation of gene expression, ligand binding to the aptamer domain of a riboswitch triggers a signal to the downstream expression platform. A complete understanding of the structural basis of this mechanism requires the ability to study structural changes over time. Here we use femtosecond X-ray free electron laser (XFEL) pulses to obtain structural measurements from crystals so small that diffusion of a ligand can be timed to initiate a reaction before diffraction. We demonstrate this approach by determining four structures of the adenine riboswitch aptamer domain during the course of a reaction, involving two unbound apo structures, one ligand-bound intermediate, and the final ligand-bound conformation. These structures support a reaction mechanism model with at least four states and illustrate the structural basis of signal transmission. The three-way junction and the P1 switch helix of the two apo conformers are notably different from those in the ligand-bound conformation. Our time-resolved crystallographic measurements with a 10-second delay captured the structure of an intermediate with changes in the binding pocket that accommodate the ligand. With at least a 10-minute delay, the RNA molecules were fully converted to the ligand-bound state, in which the substantial conformational changes resulted in conversion of the space group. Such notable changes in crystallo highlight the important opportunities that micro- and nanocrystals may offer in these and similar time-resolved diffraction studies. Together, these results demonstrate the potential of ‘mix-and-inject’ time-resolved serial crystallography to study biochemically important interactions between biomacromolecules and ligands, including those that involve large conformational changes.


The EMBO Journal | 2013

Allosteric regulation of E2:E3 interactions promote a processive ubiquitination machine

Ranabir Das; Yu-He Liang; Jennifer Mariano; Jess Li; Tao Huang; Aaren King; Sergey G. Tarasov; Allan M. Weissman; Xinhua Ji; R. Andrew Byrd

RING finger proteins constitute the large majority of ubiquitin ligases (E3s) and function by interacting with ubiquitin‐conjugating enzymes (E2s) charged with ubiquitin. How low‐affinity RING–E2 interactions result in highly processive substrate ubiquitination is largely unknown. The RING E3, gp78, represents an excellent model to study this process. gp78 includes a high‐affinity secondary binding region for its cognate E2, Ube2g2, the G2BR. The G2BR allosterically enhances RING:Ube2g2 binding and ubiquitination. Structural analysis of the RING:Ube2g2:G2BR complex reveals that a G2BR‐induced conformational effect at the RING:Ube2g2 interface is necessary for enhanced binding of RING to Ube2g2 or Ube2g2 conjugated to Ub. This conformational effect and a key ternary interaction with conjugated ubiquitin are required for ubiquitin transfer. Moreover, RING:Ube2g2 binding induces a second allosteric effect, disrupting Ube2g2:G2BR contacts, decreasing affinity and facilitating E2 exchange. Thus, gp78 is a ubiquitination machine where multiple E2‐binding sites coordinately facilitate processive ubiquitination.


Journal of Biological Chemistry | 2010

Limitations of Peptide Retro-inverso Isomerization in Molecular Mimicry

Chong Li; Marzena Pazgier; Jing Li; Changqing Li; Min Liu; Guozhang Zou; Zhenyu Li; Jiandong Chen; Sergey G. Tarasov; Weiyue Lu; Wuyuan Lu

A retro-inverso peptide is made up of d-amino acids in a reversed sequence and, when extended, assumes a side chain topology similar to that of its parent molecule but with inverted amide peptide bonds. Despite their limited success as antigenic mimicry, retro-inverso isomers generally fail to emulate the protein-binding activities of their parent peptides of an α-helical nature. In studying the interaction between the tumor suppressor protein p53 and its negative regulator MDM2, Sakurai et al. (Sakurai, K., Chung, H. S., and Kahne, D. (2004) J. Am. Chem. Soc. 126, 16288–16289) made a surprising finding that the retro-inverso isomer of p53(15–29) retained the same binding activity as the wild type peptide as determined by inhibition enzyme-linked immunosorbent assay. The authors attributed the unusual outcome to the ability of the d-peptide to adopt a right-handed helical conformation upon MDM2 binding. Using a battery of biochemical and biophysical tools, we found that retro-inverso isomerization diminished p53 (15–29) binding to MDM2 or MDMX by 3.2–3.3 kcal/mol. Similar results were replicated with the C-terminal domain of HIV-1 capsid protein (3.0 kcal/mol) and the Src homology 3 domain of Abl tyrosine kinase (3.4 kcal/mol). CD and NMR spectroscopic as well as x-ray crystallographic studies showed that d-peptide ligands of MDM2 invariably adopted left-handed helical conformations in both free and bound states. Our findings reinforce that the retro-inverso strategy works poorly in molecular mimicry of biologically active helical peptides, due to inherent differences at the secondary and tertiary structure levels between an l-peptide and its retro-inverso isomer despite their similar side chain topologies at the primary structure level.

Collaboration


Dive into the Sergey G. Tarasov's collaboration.

Top Co-Authors

Avatar

Nadya I. Tarasova

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Vadim Gaponenko

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jess Li

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ranabir Das

National Centre for Biological Sciences

View shared research outputs
Top Co-Authors

Avatar

R. Andrew Byrd

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Allan M. Weissman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Xinhua Ji

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge