Sergey Kalachikov
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergey Kalachikov.
American Journal of Human Genetics | 2000
Zemin Deng; Jane H. Morse; Susan L. Slager; Nieves Cuervo; Keith J. Moore; George Venetos; Sergey Kalachikov; Eftihia Cayanis; Stuart G. Fischer; Robyn J. Barst; Susan E. Hodge; James A. Knowles
Familial primary pulmonary hypertension is a rare autosomal dominant disorder that has reduced penetrance and that has been mapped to a 3-cM region on chromosome 2q33 (locus PPH1). The phenotype is characterized by monoclonal plexiform lesions of proliferating endothelial cells in pulmonary arterioles. These lesions lead to elevated pulmonary-artery pressures, right-ventricular failure, and death. Although primary pulmonary hypertension is rare, cases secondary to known etiologies are more common and include those associated with the appetite-suppressant drugs, including phentermine-fenfluramine. We genotyped 35 multiplex families with the disorder, using 27 microsatellite markers; we constructed disease haplotypes; and we looked for evidence of haplotype sharing across families, using the program TRANSMIT. Suggestive evidence of sharing was observed with markers GGAA19e07 and D2S307, and three nearby candidate genes were examined by denaturing high-performance liquid chromatography on individuals from 19 families. One of these genes (BMPR2), which encodes bone morphogenetic protein receptor type II, was found to contain five mutations that predict premature termination of the protein product and two missense mutations. These mutations were not observed in 196 control chromosomes. These findings indicate that the bone morphogenetic protein-signaling pathway is defective in patients with primary pulmonary hypertension and may implicate the pathway in the nonfamilial forms of the disease.
Nature Genetics | 2002
Sergey Kalachikov; Oleg V. Evgrafov; Barbara M. Ross; Melodie R. Winawer; Christie Barker-Cummings; Filippo Martinelli Boneschi; Chang Choi; Pavel Morozov; Kamna Das; Elita Teplitskaya; Andrew Yu; Eftihia Cayanis; Graciela K. Penchaszadeh; Andreas H. Kottmann; Timothy A. Pedley; W. Allen Hauser; Ruth Ottman; T. Conrad Gilliam
The epilepsies are a common, clinically heterogeneous group of disorders defined by recurrent unprovoked seizures. Here we describe identification of the causative gene in autosomal-dominant partial epilepsy with auditory features (ADPEAF, MIM 600512), a rare form of idiopathic lateral temporal lobe epilepsy characterized by partial seizures with auditory disturbances. We constructed a complete, 4.2-Mb physical map across the genetically implicated disease-gene region, identified 28 putative genes (Fig. 1) and resequenced all or part of 21 genes before identifying presumptive mutations in one copy of the leucine-rich, glioma-inactivated 1 gene (LGI1) in each of five families with ADPEAF. Previous studies have indicated that loss of both copies of LGI1 promotes glial tumor progression. We show that the expression pattern of mouse Lgi1 is predominantly neuronal and is consistent with the anatomic regions involved in temporal lobe epilepsy. Discovery of LGI1 as a cause of ADPEAF suggests new avenues for research on pathogenic mechanisms of idiopathic epilepsies.
Cell | 2006
Leonid L. Moroz; John R. Edwards; Sathyanarayanan V. Puthanveettil; Andrea B. Kohn; Thomas Ha; Andreas Heyland; Bjarne Knudsen; Anuj Sahni; Fahong Yu; Li Liu; Sami Jezzini; Peter Lovell; William Iannucculli; Minchen Chen; Tuan Nguyen; Huitao Sheng; Regina Shaw; Sergey Kalachikov; Yuri V. Panchin; William G. Farmerie; James J. Russo; Jingyue Ju; Eric R. Kandel
Molecular analyses of Aplysia, a well-established model organism for cellular and systems neural science, have been seriously handicapped by a lack of adequate genomic information. By sequencing cDNA libraries from the central nervous system (CNS), we have identified over 175,000 expressed sequence tags (ESTs), of which 19,814 are unique neuronal gene products and represent 50%-70% of the total Aplysia neuronal transcriptome. We have characterized the transcriptome at three levels: (1) the central nervous system, (2) the elementary components of a simple behavior: the gill-withdrawal reflex-by analyzing sensory, motor, and serotonergic modulatory neurons, and (3) processes of individual neurons. In addition to increasing the amount of available gene sequences of Aplysia by two orders of magnitude, this collection represents the largest database available for any member of the Lophotrochozoa and therefore provides additional insights into evolutionary strategies used by this highly successful diversified lineage, one of the three proposed superclades of bilateral animals.
Neurology | 2004
Ruth Ottman; Melodie R. Winawer; Sergey Kalachikov; Christie Barker-Cummings; T. C. Gilliam; Timothy A. Pedley; W. A. Hauser
Objectives: Mutations in LGI1 cause autosomal dominant partial epilepsy with auditory features (ADPEAF), a form of familial temporal lobe epilepsy with auditory ictal manifestations. The authors aimed to determine what proportion of ADPEAF families carries a mutation, to estimate the penetrance of identified mutations, and to identify clinical features that distinguish families with and without mutations. Methods: The authors sequenced LGI1 in 10 newly described ADPEAF families and analyzed clinical features in these families and others with mutations reported previously. Results: Three of the families had missense mutations in LGI1 (C42R, I298T, and A110D). Penetrance was 54% in eight families with LGI1 mutations the authors have identified so far (five reported previously and three reported here). Excluding the original linkage family, the authors have found mutations in 50% (7/14) of tested families. Families with and without mutations had similar clinical features, but those with mutations contained significantly more subjects with auditory symptoms and significantly fewer with autonomic symptoms. In families with mutations, the most common auditory symptom type was simple, unformed sounds (e.g., buzzing and ringing). In two of the newly identified families with mutations, some subjects with mutations had idiopathic generalized epilepsies. Conclusions: LGI1 mutations are a common cause of autosomal dominant partial epilepsy with auditory features. Current data do not reveal a clinical feature that clearly predicts which families with autosomal dominant partial epilepsy with auditory features have a mutation. Some families with LGI1 mutations contain individuals with idiopathic generalized epilepsies. This could result from either an effect of LGI1 on risk for generalized epilepsy or an effect of co-occurring idiopathic generalized epilepsy-specific genes in these families.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Erna Magnúsdóttir; Sergey Kalachikov; Koji Mizukoshi; David Savitsky; Akemi Ishida-Yamamoto; Andrey A. Panteleyev; Kathryn Calame
The cornified layer is a compacted lattice of lipid-embedded corneocytes that provides an organisms barrier to the external environment. Cornification is the final differentiative step for epidermal keratinocytes and involves dramatic cell condensation before death. Using conditional gene deletion in mice, we identified the transcriptional repressor Blimp-1 (B lymphocyte-induced maturation protein-1) as an important regulator of keratinocyte transition from the granular to the cornified layer. More than 250 genes are misregulated in conditional knockout epidermis, including those encoding transcription factors, signal transduction components, proteinases, and enzymes involved in lipid metabolism. Steady-state mRNA and ChIP analyses of a subset of these genes provide evidence that nfat5, fos, prdm1, and dusp16 are novel direct targets of Blimp-1. Identifying nfat5 as a target of Blimp-1 repression indicates that cornification involves suppression of normal osmotic regulation in granular cells. Consistently, conditional knockout mice have delayed barrier formation as embryos, enlarged granular layer cells and corneocytes, and a morphologically abnormal cornified layer. These studies provide insight into cornification, identifying transcriptional regulatory circuitry and indicating the importance of blocking osmotic homeostasis.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Jia Guo; Ning Xu; Zengmin Li; Shenglong Zhang; Jian Wu; Dae Hyun Kim; Mong Sano Marma; Qinglin Meng; Huanyan Cao; Xiaoxu Li; Shundi Shi; Lin Yu; Sergey Kalachikov; James J. Russo; Nicholas J. Turro; Jingyue Ju
DNA sequencing by synthesis (SBS) on a solid surface during polymerase reaction can decipher many sequences in parallel. We report here a DNA sequencing method that is a hybrid between the Sanger dideoxynucleotide terminating reaction and SBS. In this approach, four nucleotides, modified as reversible terminators by capping the 3′-OH with a small reversible moiety so that they are still recognized by DNA polymerase as substrates, are combined with four cleavable fluorescent dideoxynucleotides to perform SBS. The ratio of the two sets of nucleotides is adjusted as the extension cycles proceed. Sequences are determined by the unique fluorescence emission of each fluorophore on the DNA products terminated by ddNTPs. On removing the 3′-OH capping group from the DNA products generated by incorporating the 3′-O-modified dNTPs and the fluorophore from the DNA products terminated with the ddNTPs, the polymerase reaction reinitiates to continue the sequence determination. By using an azidomethyl group as a chemically reversible capping moiety in the 3′-O-modified dNTPs, and an azido-based cleavable linker to attach the fluorophores to the ddNTPs, we synthesized four 3′-O-azidomethyl-dNTPs and four ddNTP-azidolinker-fluorophores for the hybrid SBS. After sequence determination by fluorescence imaging, the 3′-O-azidomethyl group and the fluorophore attached to the DNA extension product via the azidolinker are efficiently removed by using Tris(2-carboxyethyl)phosphine in aqueous solution that is compatible with DNA. Various DNA templates, including those with homopolymer regions, were accurately sequenced with a read length of >30 bases by using this hybrid SBS method on a chip and a four-color fluorescence scanner.
PLOS Pathogens | 2006
Vincent M. Bruno; Sergey Kalachikov; Ryan Subaran; Clarissa J. Nobile; Christos A. Kyratsous; Aaron P. Mitchell
The fungal cell wall is vital for growth, development, and interaction of cells with their environment. The response to cell wall damage is well understood from studies in the budding yeast Saccharomyces cerevisiae, where numerous cell wall integrity (CWI) genes are activated by transcription factor ScRlm1. Prior evidence suggests the hypothesis that both response and regulation may be conserved in the major fungal pathogen Candida albicans. We have tested this hypothesis by using a new C. albicans genetic resource: we have screened mutants defective in putative transcription factor genes for sensitivity to the cell wall biosynthesis inhibitor caspofungin. We find that the zinc finger protein CaCas5, which lacks a unique ortholog in S. cerevisiae, governs expression of many CWI genes. CaRlm1 has a modest role in this response. The transcriptional coactivator CaAda2 is also required for expression of many CaCas5-dependent genes, as expected if CaCas5 recruits CaAda2 to activate target gene transcription. Many caspofungin-induced C. albicans genes specify endoplasmic reticulum and secretion functions. Such genes are not induced in S. cerevisiae, but promote its growth in caspofungin. We have used a new resource to identify a key C. albicans transcriptional regulator of CWI genes and antifungal sensitivity. Our gene expression findings indicate that both divergent and conserved response genes may have significant functional roles. Our strategy may be broadly useful for identification of pathogen-specific regulatory pathways and critical response genes.
Nucleic Acids Research | 2006
Angel A. Martí; Xiaoxu Li; Steffen Jockusch; Zengmin Li; Bindu Raveendra; Sergey Kalachikov; James J. Russo; Irina Morozova; Sathyanarayanan V. Puthanveettil; Jingyue Ju; Nicholas J. Turro
We report here the design, synthesis and application of pyrene binary oligonucleotide probes for selective detection of cellular mRNA. The detection strategy is based on the formation of a fluorescent excimer when two pyrene groups are brought into close proximity upon hybridization of the probes with the target mRNA. The pyrene excimer has a long fluorescence lifetime (>40 ns) compared with that of cellular extracts (∼7 ns), allowing selective detection of the excimer using time-resolved emission spectra (TRES). Optimized probes were used to target a specific region of sensorin mRNA yielding a strong excimer emission peak at 485 nm in the presence of the target and no excimer emission in the absence of the target in buffer solution. While direct fluorescence measurement of neuronal extracts showed a strong fluorescent background, obscuring the detection of the excimer signal, time-resolved emission measurements indicated that the emission decay of the cellular extracts is ∼8 times faster than that of the pyrene excimer probes. Thus, using TRES of the pyrene probes, we are able to selectively detect mRNA in the presence of cellular extracts, demonstrating the potential for application of pyrene excimer probes for imaging mRNAs in cellular environments that have background fluorescence.
Infection and Immunity | 2009
Souhaila Al-Khodor; Sergey Kalachikov; Irina Morozova; Christopher T. D. Price; Yousef Abu Kwaik
ABSTRACT To examine the role of the PmrA/PmrB two-component system (TCS) of Legionella pneumophila in global gene regulation and in intracellular infection, we constructed pmrA and pmrB isogenic mutants by allelic exchange. Genome-wide microarray gene expression analyses of the pmrA and pmrB mutants at both the exponential and the postexponential phases have shown that the PmrA/PmrB TCS has a global effect on the expression of 279 genes classified into nine groups of genes encoding eukaryotic-like proteins, Dot/Icm apparatus and secreted effectors, type II-secreted proteins, regulators of the postexponential phase, stress response genes, flagellar biosynthesis genes, metabolic genes, and genes of unknown function. Forty-one genes were differentially regulated in the pmrA or pmrB mutant, suggesting a possible cross talk with other TCSs. The pmrB mutant is more sensitive to low pH than the pmrA mutant and the wild-type strain, suggesting that acidity may trigger this TCS. The pmrB mutant exhibits a significant defect in intracellular proliferation within human macrophages, Acanthamoeba polyphaga, and the ciliate Tetrahymena pyriformis. In contrast, the pmrA mutant is defective only in the ciliate. Despite the intracellular growth defect within human macrophages, phagosomes harboring the pmrB mutant exclude late endosomal and lysosomal markers and are remodeled by the rough endoplasmic reticulum. Similar to the dot/icm mutants, the intracellular growth defect of the pmrB mutant is totally rescued in cis within communal phagosomes harboring the wild-type strain. We conclude that the PmrA/PmrB TCS has a global effect on gene expression and is required for the intracellular proliferation of L. pneumophila within human macrophages and protozoa. Differences in gene regulation and intracellular growth phenotypes between the pmrA and pmrB mutant suggests a cross talk with other TCSs.
Journal of Internal Medicine | 2011
Brian Rafferty; Daniel Jönsson; Sergey Kalachikov; Ryan T. Demmer; Roman Nowygrod; Mitchell S.V. Elkind; Harry L. Bush; Emil Kozarov
Abstract. Rafferty B, Jönsson D, Kalachikov S, Demmer RT, Nowygrod R, Elkind MSV, Bush Jr H, Kozarov E. (Columbia University Medical Center, New York, NY; and Weill Cornell Medical College, New York, NY; USA) Impact of monocytic cells on recovery of uncultivable bacteria from atherosclerotic lesions. J Intern Med 2011; 270: 273–280.