Zengmin Li
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zengmin Li.
Proceedings of the National Academy of Sciences of the United States of America | 2005
Tae Seok Seo; Xiaopeng Bai; Dae Hyun Kim; Qinglin Meng; Shundi Shi; Hameer Ruparel; Zengmin Li; Nicholas J. Turro; Jingyue Ju
We report four-color DNA sequencing by synthesis (SBS) on a chip, using four photocleavable fluorescent nucleotide analogues (dGTP-PC-Bodipy-FL-510, dUTP-PC-R6G, dATP-PC-ROX, and dCTP-PC-Bodipy-650) (PC, photocleavable; Bodipy, 4,4-difluoro-4-bora-3α,4α-diaza-s-indacene; ROX, 6-carboxy-X-rhodamine; R6G, 6-carboxyrhodamine-6G). Each nucleotide analogue consists of a different fluorophore attached to the 5 position of the pyrimidines and the 7 position of the purines through a photocleavable 2-nitrobenzyl linker. After verifying that these nucleotides could be successfully incorporated into a growing DNA strand in a solution-phase polymerase reaction and the fluorophore could be cleaved using laser irradiation (≈355 nm) in 10 sec, we then performed an SBS reaction on a chip that contains a self-priming DNA template covalently immobilized by using 1,3-dipolar azide-alkyne cycloaddition. The DNA template was produced by PCR, using an azido-labeled primer, and the self-priming moiety was attached to the immobilized DNA template by enzymatic ligation. Each cycle of SBS consists of the incorporation of the photocleavable fluorescent nucleotide into the DNA, detection of the fluorescent signal, and photocleavage of the fluorophore. The entire process was repeated to identify 12 continuous bases in the DNA template. These results demonstrate that photocleavable fluorescent nucleotide analogues can be incorporated accurately into a growing DNA strand during a polymerase reaction in solution and on a chip. Moreover, all four fluorophores can be detected and then efficiently cleaved using near-UV irradiation, thereby allowing continuous identification of the DNA template sequence. Optimization of the steps involved in this SBS approach will further increase the read-length.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Zengmin Li; Xiaopeng Bai; Hameer Ruparel; Sobin Kim; Nicholas J. Turro; Jingyue Ju
DNA sequencing by synthesis during a polymerase reaction using laser-induced fluorescence detection is an approach that has a great potential to increase the throughput and data quality of DNA sequencing. We report the design and synthesis of a photocleavable fluorescent nucleoside triphosphate, one of the essential molecules required for the sequencing-by-synthesis approach. We synthesized this nucleoside triphosphate by attaching a fluorophore, 4,4-difluoro-5,7-dimethyl-4-bora-3α,4α-diaza-s-indacene propionic acid (BODIPY), to the 5 position of 2′-deoxyuridine triphosphate via a photocleavable 2-nitrobenzyl linker. We demonstrate that the nucleotide analogue can be faithfully incorporated by a DNA polymerase Thermo Sequenase into the growing DNA strand in a DNA-sequencing reaction and that its incorporation does not hinder the addition of the subsequent nucleotide. These results indicate that the nucleotide analogue is an excellent substrate for Thermo Sequenase. We also systematically studied the photocleavage of the fluorescent dye from a DNA molecule that contained the nucleotide analogue. UV irradiation at 340 nm of the DNA molecule led to the efficient release of the fluorescent dye, ensuring that a previous fluorescence signal did not leave any residue that could interfere with the detection of the next nucleotide. Thus, our results indicate that it should be feasible to use four different fluorescent dyes with distinct fluorescence emissions as unique tags to label the four nucleotides (A, C, G, and T) through the photocleavable 2-nitrobenzyl linker. These fluorescent tags can be removed easily by photocleavage after the identification of each nucleotide in the DNA sequencing-by-synthesis approach.
Proceedings of the National Academy of Sciences of the United States of America | 2005
Hameer Ruparel; Lanrong Bi; Zengmin Li; Xiaopeng Bai; Dae Hyun Kim; Nicholas J. Turro; Jingyue Ju
DNA sequencing by synthesis (SBS) offers an approach for potential high-throughput sequencing applications. In this method, the ability of an incoming nucleotide to act as a reversible terminator for a DNA polymerase reaction is an important requirement to unambiguously determine the identity of the incorporated nucleotide before the next nucleotide is added. A free 3′-OH group on the terminal nucleotide of the primer is necessary for the DNA polymerase to incorporate an incoming nucleotide. Therefore, if the 3′-OH group of an incoming nucleotide is capped by a chemical moiety, it will cause the polymerase reaction to terminate after the nucleotide is incorporated into the DNA strand. If the capping group is subsequently removed to generate a free 3′-OH, the polymerase reaction will reinitialize. We report here the design and synthesis of a 3′-modified photocleavable fluorescent nucleotide, 3′-O-allyl-dUTP-PC-Bodipy-FL-510 (PC-Bodipy, photocleavable 4,4-difluoro-4-bora-3α,4α-diaza-s-indacene), as a reversible terminator for SBS. This nucleotide analogue contains an allyl moiety capping the 3′-OH group and a fluorophore Bodipy-FL-510 linked to the 5 position of the uracil through a photocleavable 2-nitrobenzyl linker. Here, we have shown that this nucleotide is a good substrate for a DNA polymerase. After the nucleotide was successfully incorporated into a growing DNA strand and the fluorophore was photocleaved, the allyl group was removed by using a Pd-catalyzed reaction to reinitiate the polymerase reaction, thereby establishing the feasibility of using such nucleotide analogues as reversible terminators for SBS.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Jia Guo; Ning Xu; Zengmin Li; Shenglong Zhang; Jian Wu; Dae Hyun Kim; Mong Sano Marma; Qinglin Meng; Huanyan Cao; Xiaoxu Li; Shundi Shi; Lin Yu; Sergey Kalachikov; James J. Russo; Nicholas J. Turro; Jingyue Ju
DNA sequencing by synthesis (SBS) on a solid surface during polymerase reaction can decipher many sequences in parallel. We report here a DNA sequencing method that is a hybrid between the Sanger dideoxynucleotide terminating reaction and SBS. In this approach, four nucleotides, modified as reversible terminators by capping the 3′-OH with a small reversible moiety so that they are still recognized by DNA polymerase as substrates, are combined with four cleavable fluorescent dideoxynucleotides to perform SBS. The ratio of the two sets of nucleotides is adjusted as the extension cycles proceed. Sequences are determined by the unique fluorescence emission of each fluorophore on the DNA products terminated by ddNTPs. On removing the 3′-OH capping group from the DNA products generated by incorporating the 3′-O-modified dNTPs and the fluorophore from the DNA products terminated with the ddNTPs, the polymerase reaction reinitiates to continue the sequence determination. By using an azidomethyl group as a chemically reversible capping moiety in the 3′-O-modified dNTPs, and an azido-based cleavable linker to attach the fluorophores to the ddNTPs, we synthesized four 3′-O-azidomethyl-dNTPs and four ddNTP-azidolinker-fluorophores for the hybrid SBS. After sequence determination by fluorescence imaging, the 3′-O-azidomethyl group and the fluorophore attached to the DNA extension product via the azidolinker are efficiently removed by using Tris(2-carboxyethyl)phosphine in aqueous solution that is compatible with DNA. Various DNA templates, including those with homopolymer regions, were accurately sequenced with a read length of >30 bases by using this hybrid SBS method on a chip and a four-color fluorescence scanner.
Nucleic Acids Research | 2006
Angel A. Martí; Xiaoxu Li; Steffen Jockusch; Zengmin Li; Bindu Raveendra; Sergey Kalachikov; James J. Russo; Irina Morozova; Sathyanarayanan V. Puthanveettil; Jingyue Ju; Nicholas J. Turro
We report here the design, synthesis and application of pyrene binary oligonucleotide probes for selective detection of cellular mRNA. The detection strategy is based on the formation of a fluorescent excimer when two pyrene groups are brought into close proximity upon hybridization of the probes with the target mRNA. The pyrene excimer has a long fluorescence lifetime (>40 ns) compared with that of cellular extracts (∼7 ns), allowing selective detection of the excimer using time-resolved emission spectra (TRES). Optimized probes were used to target a specific region of sensorin mRNA yielding a strong excimer emission peak at 485 nm in the presence of the target and no excimer emission in the absence of the target in buffer solution. While direct fluorescence measurement of neuronal extracts showed a strong fluorescent background, obscuring the detection of the excimer signal, time-resolved emission measurements indicated that the emission decay of the cellular extracts is ∼8 times faster than that of the pyrene excimer probes. Thus, using TRES of the pyrene probes, we are able to selectively detect mRNA in the presence of cellular extracts, demonstrating the potential for application of pyrene excimer probes for imaging mRNAs in cellular environments that have background fluorescence.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Xiaopeng Bai; Zengmin Li; Steffen Jockusch; Nicholas J. Turro; Jingyue Ju
Three single-stranded DNA molecules of different lengths were synthesized and characterized, each containing a fluorescent dye (6-carboxyfluorescein) connected to the 5′ end via a photocleavable 2-nitrobenzyl linker and a biotin moiety at the 3′ end. UV irradiation (λ ≈ 340 nm) of solutions containing these fluorescent DNA molecules caused the complete cleavage of the nitrobenzyl linker, separating the fluorophore from the DNA. The photocleavage products were characterized by HPLC and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. Our experimental results indicated that the proximity of the chromophore 6-carboxyfluorescein to the 2-nitrobenzyl linker did not hinder the quantitative photocleavage of the linker in the DNA molecules. The biotin moiety allowed immobilization of the fluorescent DNA on streptavidin-coated glass chips. The photocleavage of the immobilized DNA was investigated directly by fluorescence spectroscopy. The results demonstrated that close to 80% of the fluorophore was removed from the immobilized DNA after UV irradiation at 340 nm. These results strongly support the application of the 2-nitrobenzyl moiety as an efficient photocleavable linker, connecting fluorescent probes to DNA molecules for a variety of biological analyses such as DNA sequencing by synthesis.
Nucleic Acids Research | 2006
Angel A. Martí; Steffen Jockusch; Zengmin Li; Jingyue Ju; Nicholas J. Turro
We report the design, synthesis and characterization of a novel molecular beacon (MB-FB) which uses the fluorescent bases (FB) 2-aminopurine (AP) and pyrrolo-dC (P-dC) as fluorophores. Because the quantum yield of these FB depend on hybridization with complementary target, the fluorescent properties of MB-FB were tuned by placing the FB site specifically within the MB such that hybridization with complementary sequence switches from single strand to double strand for AP and vice versa for P-dC. The MB-FB produces a ratiometric fluorescence increase (the fluorescence emission of P-dC over that of AP in the presence and absence of complementary sequence) of 8.5 when excited at 310 nm, the maximum absorption of AP. This ratiometric fluorescence is increased to 14 by further optimizing excitation (325 nm). The fluorescence lifetime is also affected by the addition of target, producing a change in the long-lived component from 6.5 to 8.7 ns (Exc. 310 nm, Em. 450 nm). Thermal denaturation profiles monitored at 450 nm (P-dC emission) show a cooperative denaturation of the MB-FB with a melting temperature of 53°C. The thermal denaturation profile of MB-FB hybridized with its target shows a marked fluorescence reduction at 53°C, consistent with a transition from double stranded helix to random coil DNA.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Jian Wu; Shenglong Zhang; Qinglin Meng; Huanyan Cao; Zengmin Li; Xiaoxu Li; Shundi Shi; Dae Hyun Kim; Lanrong Bi; Nicholas J. Turro; Jingyue Ju
Pyrosequencing is a method used to sequence DNA by detecting the pyrophosphate (PPi) group that is generated when a nucleotide is incorporated into the growing DNA strand in polymerase reaction. However, this method has an inherent difficulty in accurately deciphering the homopolymeric regions of the DNA templates. We report here the development of a method to solve this problem by using nucleotide reversible terminators. These nucleotide analogues are modified with a reversible chemical moiety capping the 3′-OH group to temporarily terminate the polymerase reaction. In this way, only one nucleotide is incorporated into the growing DNA strand even in homopolymeric regions. After detection of the PPi for sequence determination, the 3′-OH of the primer extension products is regenerated through different deprotection methods. Using an allyl or a 2-nitrobenzyl group as the reversible moiety to cap the 3′-OH of the four nucleotides, we have synthesized two sets of 3′-O-modified nucleotides, 3′-O-allyl-dNTPs and 3′-O-(2-nitrobenzyl)-dNTPs as reversible terminators for pyrosequencing. The capping moiety on the 3′-OH of the DNA extension product is efficiently removed after PPi detection by either a chemical method or photolysis. To sequence DNA, templates containing homopolymeric regions are immobilized on Sepharose beads, and then extension–signal detection–deprotection cycles are conducted by using the nucleotide reversible terminators on the DNA beads to unambiguously decipher the sequence of DNA templates. Our results establish that this reversible-terminator-pyrosequencing approach can be potentially developed into a powerful methodology to accurately determine DNA sequences.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Carl W. Fuller; Shiv Kumar; Mintu Porel; Minchen Chien; Arek Bibillo; P. Benjamin Stranges; Michael Dorwart; Chuanjuan Tao; Zengmin Li; Wenjing Guo; Shundi Shi; Daniel Korenblum; Andrew Trans; Anne Aguirre; Edward Shian Liu; Eric Takeshi Harada; James Pollard; Ashwini Bhat; Cynthia Cech; Alexander Yang; Cleoma Arnold; Mirkó Palla; Jennifer Hovis; Roger Chen; Irina Morozova; Sergey Kalachikov; James J. Russo; John J. Kasianowicz; Randy Davis; Stefan Roever
Significance Efficient cost-effective single-molecule sequencing platforms will facilitate deciphering complete genome sequences, determining haplotypes, and identifying alternatively spliced mRNAs. We demonstrate a single-molecule nanopore-based sequencing by synthesis approach that accurately distinguishes four DNA bases by electronically detecting and differentiating four different polymer tags attached to the terminal phosphate of the nucleotides during their incorporation into a growing DNA strand in the polymerase reaction. With nanopore detection, the distinct polymer tags are much easier to differentiate than natural nucleotides. After tag release, growing DNA chains consist of natural nucleotides allowing long reads. Sequencing is realized on an electronic chip containing an array of independently addressable electrodes, each with a single polymerase–nanopore complex, potentially offering the high throughput required for precision medicine. DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5′-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods.
Proceedings of the National Academy of Sciences of the United States of America | 2016
P. Benjamin Stranges; Mirkó Palla; Sergey Kalachikov; Jeff Nivala; Michael Dorwart; Andrew Trans; Shiv Kumar; Mintu Porel; Minchen Chien; Chuanjuan Tao; Irina Morozova; Zengmin Li; Shundi Shi; Aman Aberra; Cleoma Arnold; Alexander Yang; Anne Aguirre; Eric Takeshi Harada; Daniel Korenblum; James Pollard; Ashwini Bhat; Dmitriy Gremyachinskiy; Arek Bibillo; Roger Chen; Randy Davis; James J. Russo; Carl W. Fuller; Stefan Roever; Jingyue Ju; George M. Church
Significance DNA sequencing has been dramatically expanding its scope in basic life science research and clinical medicine. Recently, a set of polymer-tagged nucleotides were shown to be viable substrates for replication and electronically detectable in a nanopore. Here, we describe the design and characterization of a DNA polymerase–nanopore protein construct on an integrated chip. This system incorporates all four tagged nucleotides and distinguishes single–tagged-nucleotide addition in real time. Coupling protein catalysis and nanopore-based detection to an electrode array could provide the foundation of a highly scalable, single-molecule, electronic DNA-sequencing platform. Scalable, high-throughput DNA sequencing is a prerequisite for precision medicine and biomedical research. Recently, we presented a nanopore-based sequencing-by-synthesis (Nanopore-SBS) approach, which used a set of nucleotides with polymer tags that allow discrimination of the nucleotides in a biological nanopore. Here, we designed and covalently coupled a DNA polymerase to an α-hemolysin (αHL) heptamer using the SpyCatcher/SpyTag conjugation approach. These porin–polymerase conjugates were inserted into lipid bilayers on a complementary metal oxide semiconductor (CMOS)-based electrode array for high-throughput electrical recording of DNA synthesis. The designed nanopore construct successfully detected the capture of tagged nucleotides complementary to a DNA base on a provided template. We measured over 200 tagged-nucleotide signals for each of the four bases and developed a classification method to uniquely distinguish them from each other and background signals. The probability of falsely identifying a background event as a true capture event was less than 1.2%. In the presence of all four tagged nucleotides, we observed sequential additions in real time during polymerase-catalyzed DNA synthesis. Single-polymerase coupling to a nanopore, in combination with the Nanopore-SBS approach, can provide the foundation for a low-cost, single-molecule, electronic DNA-sequencing platform.