Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergey Matveev is active.

Publication


Featured researches published by Sergey Matveev.


Journal of Clinical Investigation | 2003

HIV protease inhibitors promote atherosclerotic lesion formation independent of dyslipidemia by increasing CD36-dependent cholesteryl ester accumulation in macrophages

James Dressman; Jeanie Kincer; Sergey Matveev; Ling Guo; Richard N. Greenberg; Theresa Guerin; David W. Meade; Xiang-An Li; Weifei Zhu; Annette Uittenbogaard; Melinda E. Wilson; Eric J. Smart

Protease inhibitors decrease the viral load in HIV patients, however the patients develop hypertriglyceridemia, hypercholesterolemia, and atherosclerosis. It has been assumed that protease inhibitor-dependent increases in atherosclerosis are secondary to the dyslipidemia. Incubation of THP-1 cells or human PBMCs with protease inhibitors caused upregulation of CD36 and the accumulation of cholesteryl esters. The use of CD36-blocking antibodies, a CD36 morpholino, and monocytes isolated from CD36 null mice demonstrated that protease inhibitor-induced increases in cholesteryl esters were dependent on CD36 upregulation. These data led to the hypothesis that protease inhibitors induce foam cell formation and consequently atherosclerosis by upregulating CD36 and cholesteryl ester accumulation independent of dyslipidemia. Studies with LDL receptor null mice demonstrated that low doses of protease inhibitors induce an increase in the level of CD36 and cholesteryl ester in peritoneal macrophages and the development of atherosclerosis without altering plasma lipids. Furthermore, the lack of CD36 protected the animals from protease inhibitor-induced atherosclerosis. Finally, ritonavir increased PPAR-gamma and CD36 mRNA levels in a PKC- and PPAR-gamma-dependent manner. We conclude that protease inhibitors contribute to the formation of atherosclerosis by promoting the upregulation of CD36 and the subsequent accumulation of sterol in macrophages.


Journal of Clinical Investigation | 2003

HDL-associated estradiol stimulates endothelial NO synthase and vasodilation in an SR-BI–dependent manner

Ming Gong; Melinda E. Wilson; Thomas Kelly; Wen Su; James Dressman; Jeanie Kincer; Sergey Matveev; Ling Guo; Theresa Guerin; Xiang-An Li; Weifei Zhu; Annette Uittenbogaard; Eric J. Smart

Cardiovascular diseases remain the leading cause of death in the United States. Two factors associated with a decreased risk of developing cardiovascular disease are elevated HDL levels and sex - specifically, a decreased risk is found in premenopausal women. HDL and estrogen stimulate eNOS and the production of nitric oxide, which has numerous protective effects in the vascular system including vasodilation, antiadhesion, and anti-inflammatory effects. We tested the hypothesis that HDL binds to its receptor, scavenger receptor class B type I (SR-BI), and delivers estrogen to eNOS, thereby stimulating the enzyme. HDL isolated from women stimulated eNOS, whereas HDL isolated from men had minimal activity. Studies with ovariectomized and ovariectomized/estrogen replacement mouse models demonstrated that HDL-associated estradiol stimulation of eNOS is SR-BI dependent. Furthermore, female HDL, but not male HDL, promoted the relaxation of muscle strips isolated from C57BL/6 mice but not SR-BI null mice. Finally, HDL isolated from premenopausal women or postmenopausal women receiving estradiol replacement therapy stimulated eNOS, whereas HDL isolated from postmenopausal women did not stimulate eNOS. We conclude that HDL-associated estrodial is capable of the stimulating eNOS. These studies establish a new paradigm for examining the cardiovascular effects of HDL and estrogen.


Journal of Biological Chemistry | 2002

Cholesteryl ester is transported from caveolae to internal membranes as part of a caveolin-annexin II lipid-protein complex

Annette Uittenbogaard; William V. Everson; Sergey Matveev; Eric J. Smart

This article has been retracted by the publisher. An investigation by the Office of Research Integrity determined that falsified and/or fabricated Western blots were included in Figs. 5 and 7 (https://federalregister.gov/a/2012-28209). THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 288, NO. 9, p. 6586, March 1, 2013


Advanced Drug Delivery Reviews | 2001

The role of caveolae and caveolin in vesicle-dependent and vesicle-independent trafficking

Sergey Matveev; Xiang-An Li; William V. Everson; Eric J. Smart

Caveolae can mediate endocytosis, transcytosis, and potocytosis. Our understanding of these processes as well as the elucidation of the molecular machinery involved has greatly expanded. In addition, caveolin, a 22 kDa protein often associated with caveolae, can promote the trafficking of sterol through the cytoplasm independent of vesicles. Caveolin also influences the formation, morphology, and function of caveolae. The ability of caveolae and caveolin to mediate macromolecular transport directly impacts a variety of physiological and pathophysiological processes.


Environmental Health Perspectives | 2004

Dietary Fat Interacts with PCBs to Induce Changes in Lipid Metabolism in Mice Deficient in Low-Density Lipoprotein Receptor

Bernhard Hennig; Gudrun Reiterer; Michal Toborek; Sergey Matveev; Alan Daugherty; Eric J. Smart; Larry W. Robertson

There is evidence that dietary fat can modify the cytotoxicity of polychlorinated biphenyls (PCBs) and that coplanar PCBs can induce inflammatory processes critical in the pathology of vascular diseases. To test the hypothesis that the interaction of PCBs with dietary fat is dependent on the type of fat, low-density lipoprotein receptor–deficient (LDL-R−/−) mice were fed diets enriched with either olive oil or corn oil for 4 weeks. Half of the animals from each group were injected with PCB-77. Vascular cell adhesion molecule-1 (VCAM-1) expression in aortic arches was non-detectable in the olive-oil–fed mice but was highly expressed in the presence of PCB-77. PCB treatment increased liver neutral lipids and decreased serum fatty acid levels only in mice fed the corn-oil–enriched diet. PCB treatment increased mRNA expression of genes involved in inflammation, apoptosis, and oxidative stress in all mice. Upon PCB treatment, mice in both olive- and corn-oil–diet groups showed induction of genes involved in fatty acid degradation but with up-regulation of different key enzymes. Genes involved in fatty acid synthesis were reduced only upon PCB treatment in corn-oil–fed mice, whereas lipid transport/export genes were altered in olive-oil–fed mice. These data suggest that dietary fat can modify changes in lipid metabolism induced by PCBs in serum and tissues. These findings have implications for understanding the interactions of nutrients with environmental contaminants on the pathology of inflammatory diseases such as atherosclerosis.


Trends in Cardiovascular Medicine | 1999

Class B Scavenger Receptors, Caveolae and Cholesterol Homeostasis

Gregory A. Graf; Sergey Matveev; Eric J. Smart

Class B scavenger receptors are predominantly localized to cholesterol and sphingomyelin-enriched domains within the plasma membrane, called caveolae. Caveolae and their associated protein, caveolin, have been implicated in cholesterol trafficking and in the regulation of cellular cholesterol homeostasis. Recent studies indicate that scavenger receptor, class B, type I (SR-BI) mediates cholesterol flux between cells and lipoproteins. Caveolae appear to be the sites within the plasma membrane where such exchange occurs, suggesting that the regulation of caveolae and caveolins may be pivotal to the net flux of cholesterol between cells and lipoproteins when they are bound to SR-BI.


Journal of Biological Chemistry | 2009

Suppression of Rft1 Expression Does Not Impair the Transbilayer Movement of Man5GlcNAc2-P-P-Dolichol in Sealed Microsomes from Yeast

Jeffrey S. Rush; Ningguo Gao; Mark A. Lehrman; Sergey Matveev; Charles J. Waechter

To further evaluate the role of Rft1 in the transbilayer movement of Man5GlcNAc2-P-P-dolichol (M5-DLO), a series of experiments was conducted with intact cells and sealed microsomal vesicles. First, an unexpectedly large accumulation (37-fold) of M5-DLO was observed in Rft1-depleted cells (YG1137) relative to Glc3Man9GlcNAc2-P-P-Dol in wild type (SS328) cells when glycolipid levels were compared by fluorophore-assisted carbohydrate electrophoresis analysis. When sealed microsomes from wild type cells and cells depleted of Rft1 were incubated with GDP-[3H]mannose or UDP-[3H]GlcNAc in the presence of unlabeled GDP-Man, no difference was observed in the rate of synthesis of [3H]Man9GlcNAc2-P-P-dolichol or Man9[3H]GlcNAc2-P-P-dolichol, respectively. In addition, no difference was seen in the level of M5-DLO flippase activity in sealed wild type and Rft1-depleted microsomal vesicles when the activity was assessed by the transport of GlcNAc2-P-P-Dol15, a water-soluble analogue. The entry of the analogue into the lumenal compartment was confirmed by demonstrating that [3H]chitobiosyl units were transferred to endogenous peptide acceptors via the yeast oligosaccharyltransferase when sealed vesicles were incubated with [3H]GlcNAc2-P-P-Dol15 in the presence of an exogenously supplied acceptor peptide. In addition, several enzymes involved in Dol-P and lipid intermediate biosynthesis were found to be up-regulated in Rft1-depleted cells. All of these results indicate that although Rft1 may play a critical role in vivo, depletion of this protein does not impair the transbilayer movement of M5-DLO in sealed microsomal fractions prepared from disrupted cells.


Annals of Neurology | 2012

Pittsburgh compound B and the postmortem diagnosis of Alzheimer disease.

Dana M. Niedowicz; Tina L. Beckett; Sergey Matveev; Adam M. Weidner; Irfan Baig; Richard J. Kryscio; Marta S. Mendiondo; Harry LeVine; Jeffrey N. Keller; M. Paul Murphy

Deposition of the amyloid‐β (Aβ) peptide in neuritic plaques is a requirement for the diagnosis of Alzheimer disease (AD). Although the continued development of in vivo imaging agents such as Pittsburgh compound B (PiB) is promising, the diagnosis of AD is still challenging. This can be partially attributed to our lack of a detailed understanding of the interrelationship between the various pools and species of Aβ and other common indices of AD pathology. We hypothesized that recent advances in our ability to accurately measure Aβ postmortem (for example, using PiB), could form the basis of a simple means to deliver an accurate AD diagnosis.


Journal of Neurochemistry | 2014

A distinct subfraction of Aβ is responsible for the high-affinity Pittsburgh compound B-binding site in Alzheimer's disease brain.

Sergey Matveev; Hans Peter Spielmann; Brittney M. Metts; Jing Chen; Fredrick O. Onono; Haining Zhu; Stephen W. Scheff; Lary C. Walker; Harry LeVine

The positron emission tomography (PET) ligand 11C‐labeled Pittsburgh compound B (PIB) is used to image β‐amyloid (Aβ) deposits in the brains of living subjects with the intent of detecting early stages of Alzheimers disease (AD). However, deposits of human‐sequence Aβ in amyloid precursor protein transgenic mice and non‐human primates bind very little PIB. The high stoichiometry of PIB:Aβ binding in human AD suggests that the PIB‐binding site may represent a particularly pathogenic entity and/or report local pathologic conditions. In this study, 3H‐PIB was employed to track purification of the PIB‐binding site in > 90% yield from frontal cortical tissue of autopsy‐diagnosed AD subjects. The purified PIB‐binding site comprises a distinct, highly insoluble subfraction of the Aβ in AD brain with low buoyant density because of the sodium dodecyl sulfate‐resistant association with a limited subset of brain proteins and lipids with physical properties similar to lipid rafts and to a ganglioside:Aβ complex in AD and Down syndrome brain. Both the protein and lipid components are required for PIB binding. Elucidation of human‐specific biological components and pathways will be important in guiding improvement of the animal models for AD and in identifying new potential therapeutic avenues.


PLOS ONE | 2011

RNA Oxidation Adducts 8-OHG and 8-OHA Change with Aβ42 Levels in Late-Stage Alzheimer's Disease

Adam M. Weidner; Melissa A. Bradley; Tina L. Beckett; Dana M. Niedowicz; Amy L.S. Dowling; Sergey Matveev; Harry LeVine; Mark A. Lovell; M. Paul Murphy

While research supports amyloid-β (Aβ) as the etiologic agent of Alzheimers disease (AD), the mechanism of action remains unclear. Evidence indicates that adducts of RNA caused by oxidation also represent an early phenomenon in AD. It is currently unknown what type of influence these two observations have on each other, if any. We quantified five RNA adducts by gas chromatography/mass spectroscopy across five brain regions from AD cases and age-matched controls. We then used a reductive directed analysis to compare the RNA adducts to common indices of AD neuropathology and various pools of Aβ. Using data from four disease-affected brain regions (Brodmanns Area 9, hippocampus, inferior parietal lobule, and the superior and middle temporal gyri), we found that the RNA adduct 8-hydroxyguanine (8-OHG) decreased, while 8-hydroxyadenine (8-OHA) increased in AD. The cerebellum, which is generally spared in AD, did not show disease related changes, and no RNA adducts correlated with the number of plaques or tangles. Multiple regression analysis revealed that SDS-soluble Aβ42 was the best predictor of changes in 8-OHG, while formic acid-soluble Aβ42 was the best predictor of changes in 8-OHA. This study indicates that although there is a connection between AD related neuropathology and RNA oxidation, this relationship is not straightforward.

Collaboration


Dive into the Sergey Matveev's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiang-An Li

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge