Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tina L. Beckett is active.

Publication


Featured researches published by Tina L. Beckett.


The Journal of Neuroscience | 2009

Cognitive Decline in Alzheimer's Disease Is Associated with Selective Changes in Calcineurin/NFAT Signaling

Hafiz Mohmmad Abdul; Michelle A. Sama; Jennifer L. Furman; Diana M. Mathis; Tina L. Beckett; Adam M. Weidner; Ela Patel; Irfan Baig; M. Paul Murphy; Harry LeVine; Susan D. Kraner; Christopher M. Norris

Upon activation by calcineurin, the nuclear factor of activated T-cells (NFAT) translocates to the nucleus and guides the transcription of numerous molecules involved in inflammation and Ca2+ dysregulation, both of which are prominent features of Alzheimers disease (AD). However, NFAT signaling in AD remains relatively uninvestigated. Using isolated cytosolic and nuclear fractions prepared from rapid-autopsy postmortem human brain tissue, we show that NFATs 1 and 3 shifted to nuclear compartments in the hippocampus at different stages of neuropathology and cognitive decline, whereas NFAT2 remained unchanged. NFAT1 exhibited greater association with isolated nuclear fractions in subjects with mild cognitive impairment (MCI), whereas NFAT3 showed a strong nuclear bias in subjects with severe dementia and AD. Similar to NFAT1, calcineurin-Aα also exhibited a nuclear bias in the early stages of cognitive decline. But, unlike NFAT1 and similar to NFAT3, the nuclear bias for calcineurin became more pronounced as cognition worsened. Changes in calcineurin/NFAT3 were directly correlated to soluble amyloid-β (Aβ(1-42)) levels in postmortem hippocampus, and oligomeric Aβ, in particular, robustly stimulated NFAT activation in primary rat astrocyte cultures. Oligomeric Aβ also caused a significant reduction in excitatory amino acid transporter 2 (EAAT2) protein levels in astrocyte cultures, which was blocked by NFAT inhibition. Moreover, inhibition of astrocytic NFAT activity in mixed cultures ameliorated Aβ-dependent elevations in glutamate and neuronal death. The results suggest that NFAT signaling is selectively altered in AD and may play an important role in driving Aβ-mediated neurodegeneration.


The Journal of Neuroscience | 2012

Targeting Astrocytes Ameliorates Neurologic Changes in a Mouse Model of Alzheimer's Disease

Jennifer L. Furman; Diana M. Sama; John C. Gant; Tina L. Beckett; M. Paul Murphy; Adam D. Bachstetter; Linda J. Van Eldik; Christopher M. Norris

Astrocytes are the most abundant cell type in the brain and play a critical role in maintaining healthy nervous tissue. In Alzheimers disease (AD) and most other neurodegenerative disorders, many astrocytes convert to a chronically “activated” phenotype characterized by morphologic and biochemical changes that appear to compromise protective properties and/or promote harmful neuroinflammatory processes. Activated astrocytes emerge early in the course of AD and become increasingly prominent as clinical and pathological symptoms progress, but few studies have tested the potential of astrocyte-targeted therapeutics in an intact animal model of AD. Here, we used adeno-associated virus (AAV) vectors containing the astrocyte-specific Gfa2 promoter to target hippocampal astrocytes in APP/PS1 mice. AAV–Gfa2 vectors drove the expression of VIVIT, a peptide that interferes with the immune/inflammatory calcineurin/NFAT (nuclear factor of activated T-cells) signaling pathway, shown by our laboratory and others to orchestrate biochemical cascades leading to astrocyte activation. After several months of treatment with Gfa2–VIVIT, APP/PS1 mice exhibited improved cognitive and synaptic function, reduced glial activation, and lower amyloid levels. The results confirm a deleterious role for activated astrocytes in AD and lay the groundwork for exploration of other novel astrocyte-based therapies.


Journal of Alzheimer's Disease | 2012

Long-term pioglitazone treatment improves learning and attenuates pathological markers in a mouse model of alzheimer's disease

James L. Searcy; Jeremiah T. Phelps; Tristano Pancani; Inga Kadish; Jelena Popovic; Katie L. Anderson; Tina L. Beckett; Michael P. Murphy; Kuey-Chu Chen; Eric M. Blalock; Philip W. Landfield; Nada M. Porter; Olivier Thibault

Thiazolidinediones (TZDs) are agonists at peroxisome proliferator-activated gamma-type (PPAR-γ) receptors and are used clinically for the treatment of type 2 diabetes where they have been shown to reestablish insulin sensitivity, improve lipid profiles, and reduce inflammation. Recent work also suggests that TZDs may be beneficial in Alzheimers disease (AD), ameliorating cognitive decline early in the disease process. However, there have been only a few studies identifying mechanisms through which cognitive benefits may be exerted. Starting at 10 months of age, the triple transgenic mouse model of AD (3xTg-AD) with accelerated amyloid-β (Aβ) deposition and tau pathology was treated with the TZD pioglitazone (PIO-Actos) at 18 mg/Kg body weight/day. After four months, PIO-treated animals showed multiple beneficial effects, including improved learning on the active avoidance task, reduced serum cholesterol, decreased hippocampal amyloid-β and tau deposits, and enhanced short- and long-term plasticity. Electrophysiological membrane properties and post-treatment blood glucose levels were unchanged by PIO. Gene microarray analyses of hippocampal tissue identified predicted transcriptional responses following TZD treatment as well as potentially novel targets of TZDs, including facilitation of estrogenic processes and decreases in glutamatergic and lipid metabolic/cholesterol dependent processes. Taken together, these results confirm prior animal studies showing that TZDs can ameliorate cognitive deficits associated with AD-related pathology, but also extend these findings by pointing to novel molecular targets in the brain.


Journal of Neurochemistry | 2010

BACE1 and BACE2 Enzymatic Activities in Alzheimer’s Disease

Rachel R. Ahmed; Christopher J. Holler; Robin L. Webb; Feng Li; Tina L. Beckett; M. Paul Murphy

J. Neurochem. (2009) 112, 1045–1053.


Biochimica et Biophysica Acta | 2012

Association between frontal cortex oxidative damage and beta-amyloid as a function of age in Down syndrome

Giovanna Cenini; Amy L.S. Dowling; Tina L. Beckett; Eugenio Barone; Cesare Mancuso; Michael P. Murphy; Harry LeVine; Ira T. Lott; Frederick A. Schmitt; D. Allan Butterfield; Elizabeth Head

Down syndrome (DS) is the most common genetic cause of intellectual disability in children, and the number of adults with DS reaching old age is increasing. By the age of 40 years, virtually all people with DS have sufficient neuropathology for a postmortem diagnosis of Alzheimer disease (AD). Trisomy 21 in DS leads to an overexpression of many proteins, of which at least two are involved in oxidative stress and AD: superoxide dismutase 1 (SOD1) and amyloid precursor protein (APP). In this study, we tested the hypothesis that DS brains with neuropathological hallmarks of AD have more oxidative and nitrosative stress than those with DS but without significant AD pathology, as compared with similarly aged-matched non-DS controls. The frontal cortex was examined in 70 autopsy cases (n=29 control and n=41 DS). By ELISA, we quantified soluble and insoluble Aβ40 and Aβ42, as well as oligomers. Oxidative and nitrosative stress levels (protein carbonyls, 4-hydroxy-2-trans-nonenal (HNE)-bound proteins, and 3-nitrotyrosine) were measured by slot-blot. We found that soluble and insoluble amyloid beta peptide (Aβ) and oligomers increase as a function of age in DS frontal cortex. Of the oxidative stress markers, HNE-bound proteins were increased overall in DS. Protein carbonyls were correlated with Aβ40 levels. These results suggest that oxidative damage, but not nitrosative stress, may contribute to the onset and progression of AD pathogenesis in DS. Conceivably, treatment with antioxidants may provide a point of intervention to slow pathological alterations in DS.


Redox biology | 2013

Oxidative modification of lipoic acid by HNE in Alzheimer disease brain

Sarita S. Hardas; Rukhsana Sultana; Amy M. Clark; Tina L. Beckett; Luke I. Szweda; M. Paul Murphy; D. Allan Butterfield

Alzheimer disease (AD) is an age-related neurodegenerative disease characterized by the presence of three pathological hallmarks: synapse loss, extracellular senile plaques (SP) and intracellular neurofibrillary tangles (NFTs). The major component of SP is amyloid β-peptide (Aβ), which has been shown to induce oxidative stress. The AD brain shows increased levels of lipid peroxidation products, including 4-hydroxy-2-nonenal (HNE). HNE can react covalently with Cys, His, or Lys residues on proteins, altering structure and function of the latter. In the present study we measured the levels of the HNE-modified lipoic acid in brain of subjects with AD and age-matched controls. Lipoic acid is a key co-factor for a number of proteins including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, key complexes for cellular energetics. We observed a significant decrease in the levels of HNE-lipoic acid in the AD brain compared to that of age-matched controls. To investigate this phenomenon further, the levels and activity of lipoamide dehydrogenase (LADH) were measured in AD and control brains. Additionally, LADH activities were measured after in-vitro HNE-treatment to mice brains. Both LADH levels and activities were found to be significantly reduced in AD brain compared to age-matched control. HNE-treatment also reduced the LADH activity in mice brain. These data are consistent with a two-hit hypothesis of AD: oxidative stress leads to lipid peroxidation that, in turn, causes oxidative dysfunction of key energy-related complexes in mitochondria, triggering neurodegeneration. This study is consonant with the notion that lipoic acid supplementation could be a potential treatment for the observed loss of cellular energetics in AD and potentiate the antioxidant defense system to prevent or delay the oxidative stress in and progression of this devastating dementing disorder.


Neurobiology of Disease | 2011

Cognitive impairment in humanized APP×PS1 mice is linked to Aβ(1-42) and NOX activation.

Annadora J. Bruce-Keller; Sunita Gupta; Alecia G. Knight; Tina L. Beckett; Jessica M. McMullen; Paulina R. Davis; M. Paul Murphy; Linda J. Van Eldik; Daret K. St. Clair; Jeffrey N. Keller

Cognitive impairment in Alzheimers disease (AD) is strongly associated with both extensive deposition of amyloid β peptides and oxidative stress, but the exact role of these indices in the development of dementia is not clear. This study was designed to determine the relationship between cognitive impairment, activation of the free radical producing enzyme NADPH oxidase (NOX), and progressive changes in Aβ deposition and solubility in humanized APP×PS1 knock-in mice of increasing age. Data show that cognitive performance and expression of key synaptic proteins were progressively decreased in aging APP×PS1 mice. Likewise, NOX activity and expression of the specific NOX subunit NOX4 were significantly increased in APP×PS1 mice in an age-dependent manner, and NOX activity and cognitive impairment shared a significant linear relationship. Data further show that age-dependent increases in Aβ(1-42) had a significant linear relationship with both NOX activity and cognitive performance in APP×PS1 knock-in mice. Collectively, these data show that NOX expression and activity are significantly upregulated with age in this humanized model of Aβ pathogenesis, and suggest that NOX-associated redox pathways are intimately linked to both the loss of cognitive function and the deposition of Aβ(1-42).


Molecular and Cellular Neuroscience | 2010

Circulating neprilysin clears brain amyloid.

Yinxing Liu; Christa M. Studzinski; Tina L. Beckett; M. Paul Murphy; Ronald L. Klein; Louis B. Hersh

The use of the peptidase neprilysin (NEP) as a therapeutic for lowering brain amyloid burden is receiving increasing attention. We have previously demonstrated that peripheral expression of NEP on the surface of hindlimb muscle lowers brain amyloid burden in a transgenic mouse model of Alzheimers disease. In this study we now show that using adeno-associated virus expressing a soluble secreted form of NEP (secNEP-AAV8), NEP secreted into plasma is effective in clearing brain Abeta. Soluble NEP expression in plasma was sustained over the 3-month time period it was measured. Secreted NEP decreased plasma Abeta by 30%, soluble brain Abeta by approximately 28%, insoluble brain Abeta by approximately 55%, and Abeta oligomersby 12%. This secNEP did not change plasma levels of substance P or bradykinin, nor did it alter blood pressure. No NEP was detected in CSF, nor did the AAV virus produce brain expression of NEP. Thus the lowering of brain Abeta was due to plasma NEP which altered blood-brain Abeta transport dynamics. Expressing NEP in plasma provides a convenient way to monitor enzyme activity during the course of its therapeutic testing.


Molecular Therapy | 2009

Expression of neprilysin in skeletal muscle reduces amyloid burden in a transgenic mouse model of Alzheimer disease.

Yinxing Liu; Christa M. Studzinski; Tina L. Beckett; Hanjun Guan; Matthew Hersh; M. Paul Murphy; Ronald L. Klein; Louis B. Hersh

Neprilysin (NEP) is a zinc metallopeptidase that efficiently degrades the amyloid beta (Abeta) peptides believed to be involved in the etiology of Alzheimer disease (AD). The focus of this study was to develop a new and tractable therapeutic approach for treating AD using NEP gene therapy. We have introduced adeno-associated virus (AAV) expressing the mouse NEP gene into the hindlimb muscle of 6-month-old human amyloid precursor protein (hAPP) (3X-Tg-AD) mice, an age which correlates with early stage AD. Overexpression of NEP in muscle decreased brain soluble Abeta peptide levels by approximately 60% and decreased amyloid deposits by approximately 50%, with no apparent adverse effects. Expression of NEP on muscle did not affect the levels of a number of other physiological peptides known to be in vitro substrates. These findings demonstrate that peripheral expression of NEP and likely other peptidases represents an alternative to direct administration into brain and illustrates the potential for using NEP expression in muscle for the prevention and treatment of AD.


Journal of Alzheimer's Disease | 2010

Amyloid-β Peptide and Oligomers in the Brain and Cerebrospinal Fluid of Aged Canines

Elizabeth Head; Viorela Pop; Floyd Sarsoza; Rakez Kayed; Tina L. Beckett; Christa M. Studzinski; Jennifer L. Tomic; Charles G. Glabe; M. Paul Murphy

The study of Alzheimers disease (AD) pathogenesis requires the use of animal models that develop some amount of amyloid pathology in the brain. Aged canines (beagles) naturally accumulate human-type amyloid-beta peptide (Abeta) and develop parallel declines in cognitive function. However, the type and quantity of biochemically extracted Abeta in brain and cerebrospinal fluid (CSF), its link to aging, and similarity to human aging has not been examined systematically. Thirty beagles, aged 4.5-15.7 years, were studied. Abeta40 and Abeta42 were measured in CSF by ELISA, and from SDS and formic acid extracted prefrontal cortex. A sample of the contralateral hemisphere, used to assess immunohistochemical amyloid load, was used for comparison. In the brain, increases in Abeta42 were detected at a younger age, prior to increases in Abeta40, and were correlated with an increased amyloid load. In the CSF, Abeta42 decreased with age while Abeta40 levels remained constant. The CSF Abeta42/40 ratio was also a good predictor of the amount of Abeta in the brain. The amount of soluble oligomers in CSF was inversely related to brain extractable Abeta, whereas oligomers in the brain were correlated with SDS soluble Abeta42. These findings indicate that the Abeta in the brain of the aged canine exhibits patterns that mirror Abeta deposited in the human brain. These parallels support the idea that the aged canine is a useful intermediate between transgenic mice and humans for studying the development of amyloid pathology and is a potentially useful model for the refinement of therapeutic interventions.

Collaboration


Dive into the Tina L. Beckett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge