Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergey Milikisiyants is active.

Publication


Featured researches published by Sergey Milikisiyants.


Journal of Physical Chemistry B | 2015

Cysteine-Specific Labeling of Proteins with a Nitroxide Biradical for Dynamic Nuclear Polarization NMR

Maxim A. Voinov; Daryl B. Good; Meaghan E. Ward; Sergey Milikisiyants; Antonin Marek; Marc A. Caporini; Melanie Rosay; Rachel Munro; Milena Ljumovic; Leonid S. Brown; Vladimir Ladizhansky; Alex I. Smirnov

Dynamic nuclear polarization (DNP) enhances the signal in solid-state NMR of proteins by transferring polarization from electronic spins to the nuclear spins of interest. Typically, both the protein and an exogenous source of electronic spins, such as a biradical, are either codissolved or suspended and then frozen in a glycerol/water glassy matrix to achieve a homogeneous distribution. While the use of such a matrix protects the protein upon freezing, it also reduces the available sample volume (by ca. a factor of 4 in our experiments) and causes proportional NMR signal loss. Here we demonstrate an alternative approach that does not rely on dispersing the DNP agent in a glassy matrix. We synthesize a new biradical, ToSMTSL, which is based on the known DNP agent TOTAPOL, but also contains a thiol-specific methanethiosulfonate group to allow for incorporating this biradical into a protein in a site-directed manner. ToSMTSL was characterized by EPR and tested for DNP of a heptahelical transmembrane protein, Anabaena sensory rhodopsin (ASR), by covalent modification of solvent-exposed cysteine residues in two (15)N-labeled ASR mutants. DNP enhancements were measured at 400 MHz/263 GHz NMR/EPR frequencies for a series of samples prepared in deuterated and protonated buffers and with varied biradical/protein ratios. While the maximum DNP enhancement of 15 obtained in these samples is comparable to that observed for an ASR sample cosuspended with ~17 mM TOTAPOL in a glycerol-d8/D2O/H2O matrix, the achievable sensitivity would be 4-fold greater due to the gain in the filling factor. We anticipate that the DNP enhancements could be further improved by optimizing the biradical structure. The use of covalently attached biradicals would broaden the applicability of DNP NMR to structural studies of proteins.


Journal of Physical Chemistry B | 2010

Ligand Environment of the S2 State of Photosystem II: A Study of the Hyperfine Interactions of the Tetranuclear Manganese Cluster by 2D 14N HYSCORE Spectroscopy

Sergey Milikisiyants; Ruchira Chatterjee; Amanda Weyers; Ashley Meenaghan; Christopher S. Coates; K. V. Lakshmi

The solar water-splitting protein complex, photosystem II, catalyzes the light-driven oxidation of water to dioxygen in Nature. The four-electron oxidation reaction of water occurs at the tetranuclear manganese-calcium-oxo catalytic cluster that is present in the oxygen-evolving complex of photosystem II. The mechanism of light-driven water oxidation has been a subject of intense interest, and the oxygen-evolving complex of photosystem II has been studied extensively by structural and biochemical methods. While the recent X-ray crystal structures and single-crystal EXAFS investigations provide a model for the geometry of the tetranuclear manganese-calcium-oxo catalytic cluster, there is limited knowledge of the protein environment that surrounds the catalytic cluster. In this study, we demonstrate the application of two-dimensional hyperfine sublevel correlation spectroscopy to determine the magnetic couplings of the catalytic cluster with the (14)N atoms of surrounding amino acid residues in the S(2) state of the oxygen-evolving complex of photosystem II. We utilize two-dimensional difference spectroscopy to facilitate unambiguous assignments of the spectral features and identify at least three separate (14)N atoms that are interacting with the catalytic cluster in the S(2) state. The results presented here, for the first time, identify previously unknown ligands to the catalytic cluster of photosystem II and provide avenues for the assignment of residues by site-directed mutagenesis and the refinement of computational and mechanistic models of photosystem II.


Energy and Environmental Science | 2012

The structure and activation of substrate water molecules in the S2 state of photosystem II studied by hyperfine sublevel correlation spectroscopy

Sergey Milikisiyants; Ruchira Chatterjee; Christopher S. Coates; Faisal Hammad Mekky Koua; Jian Ren Shen; K. V. Lakshmi

The water-splitting protein, photosystem II, catalyzes the light-driven oxidation of water to dioxygen. The solar water oxidation reaction takes place at the catalytic center, referred to as the oxygen-evolving complex, of photosystem II. During the catalytic cycle, the oxygen-evolving complex cycles through five distinct intermediate states, S0–S4. In this study, we trap the oxygen-evolving complex in the S2 intermediate state by low temperature illumination of photosystem II isolated from three different species, Thermosynechococcus vulcanus, the PsbB variant of Synechocystis PCC 6803 and spinach. We apply two-dimensional hyperfine sublevel correlation spectroscopy to detect weak magnetic interactions between the paramagnetic tetra-nuclear manganese cluster of the S2 state of the OEC and the surrounding protons. We identify five groups of protons that are interacting with the tetra-nuclear manganese cluster. From the values of hyperfine interactions and using the recently reported 1.9 A resolution X-ray structure of the OEC in the S1 state [Umena et al., Nature, 2011, 473, 55], we discuss the assignments of the five groups of protons and draw important conclusions on the structure of the oxygen-evolving complex in the S2 state. In addition, we conclude that the structure of OEC is nearly identical in photosystem II from Thermosynechococcus vulcanus, the PsbB variant of Synechocystis PCC 6803 and spinach.


Journal of Physical Chemistry B | 2013

The Structure and Function of Quinones in Biological Solar Energy Transduction: A Cyclic Voltammetry, EPR, and Hyperfine Sub-Level Correlation (HYSCORE) Spectroscopy Study of Model Naphthoquinones

Christopher S. Coates; Jessica Ziegler; Katherine Manz; Jacob Good; Bernard Kang; Sergey Milikisiyants; Ruchira Chatterjee; Sijie Hao; John H. Golbeck; K. V. Lakshmi

Quinones function as electron transport cofactors in photosynthesis and cellular respiration. The versatility and functional diversity of quinones is primarily due to the diverse midpoint potentials that are tuned by the substituent effects and interactions with surrounding amino acid residues in the binding site in the protein. In the present study, a library of substituted 1,4-naphthoquinones are analyzed by cyclic voltammetry in both protic and aprotic solvents to determine effects of substituent groups and hydrogen bonds on the midpoint potential. We use continuous-wave electron paramagnetic resonance (EPR) spectroscopy to determine the influence of substituent groups on the electronic properties of the 1,4-naphthoquinone models in an aprotic solvent. The results establish a correlation between the presence of substituent group(s) and the modification of electronic properties and a corresponding shift in the midpoint potential of the naphthoquinone models. Further, we use pulsed EPR spectroscopy to determine the effect of substituent groups on the strength and planarity of the hydrogen bonds of naphthoquinone models in a protic solvent. This study provides support for the tuning of the electronic properties of quinone cofactors by the influence of substituent groups and hydrogen bonding interactions.


Biochemistry | 2011

Effect of Hydrogen Bond Strength on the Redox Properties of Phylloquinones: A Two-Dimensional Hyperfine Sublevel Correlation Spectroscopy Study of Photosystem I

Nithya Srinivasan; Ruchira Chatterjee; Sergey Milikisiyants; John H. Golbeck; K. V. Lakshmi

The phylloquinones of photosystem I (PS I), A(1A) and A(1B), exist in near-equivalent protein environments but possess distinct thermodynamic and kinetic properties. Although the determinants responsible for the different properties of the phylloquinones are not completely understood, the strength and geometry of hydrogen bond interactions are significant factors in tuning and control of function. This study focuses on characterizing the hydrogen-bonding interactions of the phylloquinone acceptor, A(1A), by (1)H and (14)N HYSCORE spectroscopy. Photoaccumulation of PS I complexes at pH 8.0 results in the trapping of the phyllosemiquinone anion, A(1A)(-), on the A-branch of cofactors. The experiments described here indicate that A(1A)(-) forms a single H-bond. Using a simple point dipole approximation, we estimate its length to be 1.6 ± 0.1 Å. The value of the (1)H isotropic hyperfine coupling constant suggests that the H-bond has significant out-of-plane character. The (14)N HYSCORE spectroscopy experiments support the assignment of a H-bond wherein, the (14)N quadrupolar coupling constant is consistent with a backbone amide nitrogen as the hydrogen bond donor.


Journal of Molecular Biology | 2017

Oligomeric Structure of Anabaena Sensory Rhodopsin in a Lipid Bilayer Environment by Combining Solid-State NMR and Long-range DEER Constraints

Sergey Milikisiyants; Shenlin Wang; Rachel Munro; Matthew Donohue; Meaghan E. Ward; David Bolton; Leonid S. Brown; Tatyana I. Smirnova; Vladimir Ladizhansky; Alex I. Smirnov

Oligomerization of membrane proteins is common in nature. Here, we combine spin-labeling double electron-electron resonance (DEER) and solid-state NMR (ssNMR) spectroscopy to refine the structure of an oligomeric integral membrane protein, Anabaena sensory rhodopsin (ASR), reconstituted in a lipid environment. An essential feature of such a combined approach is that it provides structural distance restraints spanning a range of ca 3-60Å while using the same sample preparation (i.e., mutations, paramagnetic labeling, and reconstitution in lipid bilayers) for both ssNMR and DEER. Direct modeling of the multispin effects on DEER signal allowed for the determination of the oligomeric order and for obtaining long-range DEER distance restraints between the ASR trimer subunits that were used to refine the ssNMR structure of ASR. The improved structure of the ASR trimer revealed a more compact packing of helices and side chains at the intermonomer interface, compared to the structure determined using the ssNMR data alone. The extent of the refinement is significant when compared with typical helix movements observed for the active states of homologous proteins. Our combined approach of using complementary DEER and NMR measurements for the determination of oligomeric structures would be widely applicable to membrane proteins where paramagnetic tags can be introduced. Such a method could be used to study the effects of the lipid membrane composition on protein oligomerization and to observe structural changes in protein oligomers upon drug, substrate, and co-factor binding.


Journal of Physical Chemistry B | 2015

Two-Dimensional HYSCORE Spectroscopy of Superoxidized Manganese Catalase: A Model for the Oxygen-Evolving Complex of Photosystem II

Christopher S. Coates; Sergey Milikisiyants; Ruchira Chatterjee; Mei M. Whittaker; James W. Whittaker; K. V. Lakshmi

The solar water-splitting protein complex, photosystem II (PSII), catalyzes one of the most energetically demanding reactions in Nature by using light energy to drive a catalyst capable of oxidizing water. The water oxidation reaction takes place at the tetra-nuclear manganese calcium-oxo (Mn4Ca-oxo) cluster at the heart of the oxygen-evolving complex (OEC) of PSII. Previous studies have determined the magnetic interactions between the paramagnetic Mn4Ca-oxo cluster and its environment in the S2 state of the OEC. The assignments for the electron-nuclear magnetic interactions that were observed in these studies were facilitated by the use of synthetic dimanganese di-μ-oxo complexes. However, there is an immense need to understand the effects of the protein environment on the coordination geometry of the Mn4Ca-oxo cluster in the OEC of PSII. In the present study, we use a proteinaceous model system to examine the protein ligands that are coordinated to the dimanganese catalytic center of manganese catalase from Lactobacillus plantarum. We utilize two-dimensional hyperfine sublevel correlation (2D HYSCORE) spectroscopy to detect the weak magnetic interactions of the paramagnetic dinuclear manganese catalytic center of superoxidized manganese catalase with the nitrogen and proton atoms of the surrounding protein environment. We obtain a complete set of hyperfine interaction parameters for the protons of a water molecule that is directly coordinated to the dinuclear manganese center. We also obtain a complete set of hyperfine and quadrupolar interaction parameters for two histidine ligands as well as a coordinated azide ligand, in azide-treated superoxidized manganese catalase. On the basis of the values of the hyperfine interaction parameters of the dimanganese model, manganese catalase, and those of the S2 state of the OEC of PSII, for the first time, we discuss the impact of a proteinaceous environment on the coordination geometry of multinuclear manganese clusters.


Journal of Physical Chemistry B | 2012

Structure and function of quinones in biological solar energy transduction: a high-frequency D-band EPR spectroscopy study of model benzoquinones.

Ruchira Chatterjee; Christopher S. Coates; Sergey Milikisiyants; Oleg G. Poluektov; K. V. Lakshmi

Quinones are utilized as charge-transfer cofactors in a wide variety of reactions that are crucial for photosynthesis and respiration. In photosynthetic protein complexes, both Type I and Type II, including oxygenic and anoxygenic reaction centers contain quinone cofactors that are known to participate in electron- and proton-transfer processes. Type II reaction centers, purple bacterial reaction centers, and photosystem II utilize benzoquinone molecules, ubiquinone, and plastoquinone, respectively, to facilitate proton-coupled electron transfer reactions. Here, we report a systematic study of the principal components of the g-tensor of an extensive library of model benzosemiquinone anion radicals in both protic (2-isopropanol) and aprotic (dimethyl sulfoxide) solvents using high-frequency EPR spectroscopy. A detailed comparison of the experimental g-values of the benzosemiquinone models at D-band EPR frequency allows for the discrimination of substituent effects and solvent hydrogen bonds on the principal components of the g-tensor. Further, we compare the primary plastosemiquinone, Q(A)(-), of photosystem II with the substituent and solvent hydrogen bond effects of benzosemiquinone models in vitro. This study significantly extends the experimental basis for elucidating the role of both molecular structure and interactions with environment on the functional tuning of quinone cofactors in biological solar energy transduction.


Journal of Magnetic Resonance | 2018

Photonic band-gap resonators for high-field/high-frequency EPR of microliter-volume liquid aqueous samples

Sergey Milikisiyants; Alexander A. Nevzorov; Alex I. Smirnov

High-field EPR provides significant advantages for studying structure and dynamics of molecular systems possessing an unpaired electronic spin. However, routine use of high-field EPR in biophysical research, especially for aqueous biological samples, is still facing substantial technical difficulties stemming from high dielectric millimeter wave (mmW) losses associated with non-resonant absorption by water and other polar molecules. The strong absorbance of mmWs by water also limits the penetration depth to just fractions of mm or even less, thus making fabrication of suitable sample containers rather challenging. Here we describe a radically new line of high Q-factor mmW resonators that are based on forming lattice defects in one-dimensional photonic band-gap (PBG) structures composed of low-loss ceramic discs of λ/4 in thickness and having alternating dielectric constants. A sample (either liquid or solid) is placed within the E = 0 node of the standing mm wave confined within the defect. A resonator prototype has been built and tested at 94.3 GHz. The resonator performance is enhanced by employing ceramic nanoporous membranes as flat sample holders of controllable thickness and tunable effective dielectric constant. The experimental Q-factor of an empty resonator was  ≈ 420. The Q-factor decreased slightly to  ≈ 370 when loaded with a water-containing nanoporous disc of 50 μm in thickness. The resonator has been tested with a number of liquid biological samples and demonstrated about tenfold gain in concentration sensitivity vs. a high-Q cylindrical TE012-type cavity. Detailed HFSS Ansys simulations have shown that the resonator structure could be further optimized by properly choosing the thickness of the aqueous sample and employing metallized surfaces. The PBG resonator design is readily scalable to higher mmW frequencies and is capable of accommodating significantly larger sample volumes than previously achieved with either Fabry-Perot or cylindrical resonators.


Journal of Magnetic Resonance | 2018

Multi-resonant Photonic Band-Gap /Saddle Coil DNP Probehead for Static Solid State NMR of Microliter Volume Samples

Alexander A. Nevzorov; Sergey Milikisiyants; Antonin Marek; Alex I. Smirnov

The most critical condition for performing Dynamic Nuclear Polarization (DNP) NMR experiments is achieving sufficiently high electronic B1e fields over the sample at the matched EPR frequencies, which for modern high-resolution NMR instruments fall into the millimeter wave (mmW) range. Typically, mmWs are generated by powerful gyrotrons and/or extended interaction klystrons (EIKs) sources and then focused onto the sample by dielectric lenses. However, further development of DNP methods including new DNP pulse sequences may require B1e fields higher than one could achieve with the current mmW technology. In order to address the challenge of significantly enhancing the mmW field at the sample, we have constructed and tested one-dimensional photonic band-gap (PBG) mmW resonator that was incorporated inside a double-tuned radiofrequency (rf) NMR saddle coil. The photonic crystal is formed by stacking ceramic discs with alternating high and low dielectric constants and thicknesses of λ/4 or 3λ/4, where λ is the wavelength of the incident mmW field in the corresponding dielectric material. When the mmW frequency is within the band gap of the photonic crystal, a defect created in the middle of the crystal confines the mmW energy, thus forming a resonant structure. An aluminum mirror in the middle of the defect has been used to substitute one-half of the structure with its mirror image in order to reduce the resonator size and simplify its tuning. The latter is achieved by adjusting the width of the defect by moving the aluminum mirror with respect to the dielectric stack using a gear mechanism. The 1D PBG resonator was the key element for constructing a multi-resonant integrated DNP/NMR probehead operating at 190-199 GHz EPR/300 MHz 1H/75.5 MHz 13C NMR frequencies. Initial tests of the multi-resonant DNP/NMR probehead were carried out using a quasioptical mmW  bridge and a Bruker Biospin Avance II spectrometer equipped with a standard Bruker 7 T wide-bore 89 mm magnet parked at 300.13 MHz 1H NMR frequency. The mmW bridge built with all solid-state active components allows for the frequency tuning between ca. 190 and ca. 199 GHz with the output power up to 27 dBm (0.5 W) at 192 GHz and up to 23 dBm (0.2 W) at 197.5 GHz. Room temperature DNP experiments with a synthetic single crystal high-pressure high-temperature (HPHT) diamond (0.3 × 0.3 × 3.0 mm3) demonstrated dramatic 1500-fold enhancement of 13C natural abundance NMR signal at full incident mmW power. Significant 13C DNP enhancement (of about 90) have been obtained at incident mmW powers of as low as <100 μW. Further tests of the resonator performance have been carried out with a thin (ca. 100 μm thickness) composite polystyrene-microdiamond film by controlling the average mmW power at the optimal DNP conditions via a gated mode of operation. From these experiments, the PBG resonator with loaded Q ≃ 250 and finesse F≈75 provides up to 12-fold or 11 db gain in the average mmW power vs. the non-resonant probehead configuration employing only a reflective mirror.

Collaboration


Dive into the Sergey Milikisiyants's collaboration.

Top Co-Authors

Avatar

K. V. Lakshmi

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Ruchira Chatterjee

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Alex I. Smirnov

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Christopher S. Coates

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Tatyana I. Smirnova

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Alexander A. Nevzorov

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Amanda Weyers

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Antonin Marek

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

John H. Golbeck

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Matthew Donohue

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge