Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergey Y. Vakhrushev is active.

Publication


Featured researches published by Sergey Y. Vakhrushev.


The EMBO Journal | 2013

Precision mapping of the human O‐GalNAc glycoproteome through SimpleCell technology

Catharina Steentoft; Sergey Y. Vakhrushev; Hiren J. Joshi; Yun Kong; Malene Bech Vester-Christensen; Katrine T-B G Schjoldager; Kirstine Lavrsen; Sally Dabelsteen; Nis Borbye Pedersen; Lara Marcos-Silva; Ramneek Gupta; Eric P. Bennett; Ulla Mandel; Søren Brunak; Hans H. Wandall; Steven B. Levery; Henrik Clausen

Glycosylation is the most abundant and diverse posttranslational modification of proteins. While several types of glycosylation can be predicted by the protein sequence context, and substantial knowledge of these glycoproteomes is available, our knowledge of the GalNAc‐type O‐glycosylation is highly limited. This type of glycosylation is unique in being regulated by 20 polypeptide GalNAc‐transferases attaching the initiating GalNAc monosaccharides to Ser and Thr (and likely some Tyr) residues. We have developed a genetic engineering approach using human cell lines to simplify O‐glycosylation (SimpleCells) that enables proteome‐wide discovery of O‐glycan sites using ‘bottom‐up’ ETD‐based mass spectrometric analysis. We implemented this on 12 human cell lines from different organs, and present a first map of the human O‐glycoproteome with almost 3000 glycosites in over 600 O‐glycoproteins as well as an improved NetOGlyc4.0 model for prediction of O‐glycosylation. The finding of unique subsets of O‐glycoproteins in each cell line provides evidence that the O‐glycoproteome is differentially regulated and dynamic. The greatly expanded view of the O‐glycoproteome should facilitate the exploration of how site‐specific O‐glycosylation regulates protein function.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Immature truncated O-glycophenotype of cancer directly induces oncogenic features

Prakash Radhakrishnan; Sally Dabelsteen; Frey Brus Madsen; Chiara Francavilla; Katharina L. Kopp; Catharina Steentoft; Sergey Y. Vakhrushev; J. Olsen; Lars Kai Hansen; Eric P. Bennett; Anders Woetmann; Guangliang Yin; Longyun Chen; Haiyan Song; Mads Bak; Ryan A. Hlady; Staci L. Peters; Rene Opavsky; Christenze Thode; Klaus Qvortrup; Katrine T. Schjoldager; Henrik Clausen; Michael A. Hollingsworth; Hans H. Wandall

Significance Cancer cells characteristically express proteins with immature O-glycosylation, but how and why cancer cells express immature O-glycans has remained poorly understood. Here, we report that one prevalent mechanism in pancreatic cancer is epigenetic silencing, rather than somatic mutations in a key chaperone, core 1 β3-Gal-T-specific molecular chaperone (COSMC), required for mature elongated O-glycosylation. We also demonstrate, with the use of well-defined cell systems generated by precise gene editing, that the aberrant O-glycophenotype by itself induces oncogenic features with enhanced growth and invasion. Our study suggests that the characteristic aberrant O-glycophenotype is critical for the development and behavior of cancer and further provides support for immunotherapeutic strategies that target aberrant O-glycans. Aberrant expression of immature truncated O-glycans is a characteristic feature observed on virtually all epithelial cancer cells, and a very high frequency is observed in early epithelial premalignant lesions that precede the development of adenocarcinomas. Expression of the truncated O-glycan structures Tn and sialyl-Tn is strongly associated with poor prognosis and overall low survival. The genetic and biosynthetic mechanisms leading to accumulation of truncated O-glycans are not fully understood and include mutation or dysregulation of glycosyltransferases involved in elongation of O-glycans, as well as relocation of glycosyltransferases controlling initiation of O-glycosylation from Golgi to endoplasmic reticulum. Truncated O-glycans have been proposed to play functional roles for cancer-cell invasiveness, but our understanding of the biological functions of aberrant glycosylation in cancer is still highly limited. Here, we used exome sequencing of most glycosyltransferases in a large series of primary and metastatic pancreatic cancers to rule out somatic mutations as a cause of expression of truncated O-glycans. Instead, we found hypermethylation of core 1 β3-Gal-T-specific molecular chaperone, a key chaperone for O-glycan elongation, as the most prevalent cause. We next used gene editing to produce isogenic cell systems with and without homogenous truncated O-glycans that enabled, to our knowledge, the first polyomic and side-by-side evaluation of the cancer O-glycophenotype in an organotypic tissue model and in xenografts. The results strongly suggest that truncation of O-glycans directly induces oncogenic features of cell growth and invasion. The study provides support for targeting cancer-specific truncated O-glycans with immunotherapeutic measures.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Probing isoform-specific functions of polypeptide GalNAc-transferases using zinc finger nuclease glycoengineered SimpleCells

Katrine T. Schjoldager; Sergey Y. Vakhrushev; Yun Kong; Catharina Steentoft; Aaron S. Nudelman; Nis Borbye Pedersen; Hans H. Wandall; Ulla Mandel; Eric P. Bennett; Steven B. Levery; Henrik Clausen

Our knowledge of the O-glycoproteome [N-acetylgalactosamine (GalNAc) type] is highly limited. The O-glycoproteome is differentially regulated in cells by dynamic expression of a subset of 20 polypeptide GalNAc-transferases (GalNAc-Ts), and methods to identify important functions of individual GalNAc-Ts are largely unavailable. We recently introduced SimpleCells, i.e., human cell lines made deficient in O-glycan extension by zinc finger nuclease targeting of a key gene in O-glycan elongation (Cosmc), which allows for proteome-wide discovery of O-glycoproteins. Here we have extended the SimpleCell concept to include proteome-wide discovery of unique functions of individual GalNAc-Ts. We used the GalNAc-T2 isoform implicated in dyslipidemia and the human HepG2 liver cell line to demonstrate unique functions of this isoform. We confirm that GalNAc-T2–directed site-specific O-glycosylation inhibits proprotein activation of the lipase inhibitor ANGPTL3 in HepG2 cells and further identify eight O-glycoproteins exclusively glycosylated by T2 of which one, ApoC-III, is implicated in dyslipidemia. Our study supports an essential role for GalNAc-T2 in lipid metabolism, provides serum biomarkers for GalNAc-T2 enzyme function, and validates the use of GALNT gene targeting with SimpleCells for broad discovery of disease-causing deficiencies in O-glycosylation. The presented glycoengineering strategy opens the way for proteome-wide discovery of functions of GalNAc-T isoforms and their role in congenital diseases and disorders.


Molecular & Cellular Proteomics | 2013

Enhanced Mass Spectrometric Mapping of the Human GalNAc-type O-Glycoproteome with SimpleCells

Sergey Y. Vakhrushev; Catharina Steentoft; Malene Bech Vester-Christensen; Eric P. Bennett; Henrik Clausen; Steven B. Levery

Characterizing protein GalNAc-type O-glycosylation has long been a major challenge, and as a result, our understanding of this glycoproteome is particularly poor. Recently, we presented a novel strategy for high throughput identification of O-GalNAc glycosites using zinc finger nuclease gene-engineered “SimpleCell” lines producing homogeneous truncated O-glycosylation. Total lysates of cells were trypsinized and subjected to lectin affinity chromatography enrichment, followed by identification of GalNAc O-glycopeptides by nLC-MS/MS, with electron transfer dissociation employed to specify sites of O-glycosylation. Here, we demonstrate a substantial improvement in the SimpleCell strategy by including an additional stage of lectin affinity chromatography on secreted glycoproteins from culture media (secretome) and by incorporating pre-fractionation of affinity-enriched glycopeptides via IEF before nLC-MS/MS. We applied these improvements to three human SimpleCells studied previously, and each yielded a substantial increase in the number of O-glycoproteins and O-glycosites identified. We found that analysis of the secretome was an important independent factor for increasing identifications, suggesting that further substantial improvements can also be sought through analysis of subcellular organelle fractions. In addition, we uncovered a substantial nonoverlapping set of O-glycoproteins and O-glycosites using an alternative protease digestion (chymotrypsin). In total, the improvements led to identification of 259 glycoproteins, of which 152 (59%) were novel compared with our previous strategy using the same three cell lines. With respect to individual glycosites, we identified a total of 856 sites, of which 508 (59%) were novel compared with our previous strategy; this includes four new identifications of O-GalNAc attached to tyrosine. Furthermore, we uncovered ∼220 O-glycosites wherein the peptides were clearly identified, but the glycosites could not be unambiguously assigned to specific positions. The improved strategy should greatly facilitate high throughput characterization of the human GalNAc-type O-glycoproteome as well as be applicable to analysis of other O-glycoproteomes.


Analytical Chemistry | 2008

Ion Mobility Mass Spectrometry Analysis of Human Glycourinome

Sergey Y. Vakhrushev; James I. Langridge; Iain Campuzano; and Chris Hughes; Jasna Peter-Katalinić

Complex carbohydrates are macromolecules biosynthesized in nontemplate-type processes, bearing specific glycoepitopes involved in crucial recognition processes such as cell differentiation and cell-cell interactions. Chemical structure of single components in complex mixtures can be analyzed by mass spectrometry for determination of the size and sequence of monosaccharides involved, branching patterns, and substitution by fucose and sialic acids. For de novo identification of glycoforms in human urinome containing N- and O-free and amino acid-linked oligosaccharides, a novel method of ion mobility tandem mass spectrometry followed by computer-assisted assignment is described. Distinct patterns of ions nested specifically by their m/z values and their drift time are observed by IMS-MS. An additional peak capacity for identification of time-separated m/z values in the IMS TOF MS mode for differentiation of singly, doubly, and triply charged molecular ion species by ion mobility separation contributes to significant reduction of carbohydrate complexity in a given mass window. Profiling of glycoforms from human urinome represents a highly efficient approach for biomarker discovery and differential glycotarget identification, demonstrating potential for diagnosis of human diseases, as for congenital disorders of glycosylation.


Glycobiology | 2015

Probing polypeptide GalNAc-transferase isoform substrate specificities by in vitro analysis

Yun Kong; Hiren J. Joshi; Katrine T. Schjoldager; Thomas Daugbjerg Madsen; Thomas A. Gerken; Malene Bech Vester-Christensen; Hans H. Wandall; Eric P. Bennett; Steven B. Levery; Sergey Y. Vakhrushev; Henrik Clausen

N-acetylgalactosaminyltransferase (GalNAc)-type (mucin-type) O-glycosylation is an abundant and highly diverse modification of proteins. This type of O-glycosylation is initiated in the Golgi by a large family of up to 20 homologous polypeptide GalNAc-T isoenzymes that transfer GalNAc to Ser, Thr and possibly Tyr residues. These GalNAc residues are then further elongated by a large set of glycosyltransferases to build a variety of complex O-glycan structures. What determines O-glycan site occupancy is still poorly understood, although it is clear that the substrate specificities of individual isoenzymes and the repertoire of GalNAc-Ts in cells are key parameters. The GalNAc-T isoenzymes are differentially expressed in cells and tissues in principle allowing cells to produce unique O-glycoproteomes dependent on the specific subset of isoforms present. In vitro analysis of acceptor peptide substrate specificities using recombinant expressed GalNAc-Ts has been the method of choice for probing activities of individual isoforms, but these studies have been hampered by biological validation of actual O-glycosylation sites in proteins and number of substrate testable. Here, we present a systematic analysis of the activity of 10 human GalNAc-T isoenzymes with 195 peptide substrates covering known O-glycosylation sites and provide a comprehensive dataset for evaluating isoform-specific contributions to the O-glycoproteome.


Molecular & Cellular Proteomics | 2012

Proteomic Cornerstones of Hematopoietic Stem Cell Differentiation: Distinct Signatures of Multipotent Progenitors and Myeloid Committed Cells

Daniel Klimmeck; Jenny Hansson; Simon Raffel; Sergey Y. Vakhrushev; Andreas Trumpp; Jeroen Krijgsveld

Regenerative tissues such as the skin epidermis, the intestinal mucosa or the hematopoietic system are organized in a hierarchical manner with stem cells building the top of this hierarchy. Somatic stem cells harbor the highest self-renewal activity and generate a series of multipotent progenitors which differentiate into lineage committed progenitors and subsequently mature cells. In this report, we applied an in-depth quantitative proteomic approach to analyze and compare the full proteomes of ex vivo isolated and FACS-sorted populations highly enriched for either multipotent hematopoietic stem/progenitor cells (HSPCs, LinnegSca-1+c-Kit+) or myeloid committed precursors (LinnegSca-1−c-Kit+). By employing stable isotope dimethyl labeling and high-resolution mass spectrometry, more than 5000 proteins were quantified. From biological triplicate experiments subjected to rigorous statistical evaluation, 893 proteins were found differentially expressed between multipotent and myeloid committed cells. The differential protein content in these cell populations points to a distinct structural organization of the cytoskeleton including remodeling activity. In addition, we found a marked difference in the expression of metabolic enzymes, including a clear shift of specific protein isoforms of the glycolytic pathway. Proteins involved in translation showed a collective higher expression in myeloid progenitors, indicating an increased translational activity. Strikingly, the data uncover a unique signature related to immune defense mechanisms, centering on the RIG-I and type-1 interferon response systems, which are installed in multipotent progenitors but not evident in myeloid committed cells. This suggests that specific, and so far unrecognized, mechanisms protect these immature cells before they mature. In conclusion, this study indicates that the transition of hematopoietic stem/progenitors toward myeloid commitment is accompanied by a profound change in processing of cellular resources, adding novel insights into the molecular mechanisms at the interface between multipotency and lineage commitment.


EMBO Reports | 2015

Deconstruction of O-glycosylation—GalNAc-T isoforms direct distinct subsets of the O-glycoproteome

Katrine T. Schjoldager; Hiren J. Joshi; Yun Kong; Christoffer K. Goth; Sarah Louise King; Hans H. Wandall; Eric P. Bennett; Sergey Y. Vakhrushev; Henrik Clausen

GalNAc‐type O‐glycosylation is found on most proteins trafficking through the secretory pathway in metazoan cells. The O‐glycoproteome is regulated by up to 20 polypeptide GalNAc‐Ts and the contributions and biological functions of individual GalNAc‐Ts are poorly understood. Here, we used a zinc‐finger nuclease (ZFN)‐directed knockout strategy to probe the contributions of the major GalNAc‐Ts (GalNAc‐T1 and GalNAc‐T2) in liver cells and explore how the GalNAc‐T repertoire quantitatively affects the O‐glycoproteome. We demonstrate that the majority of the O‐glycoproteome is covered by redundancy, whereas distinct subsets of substrates are modified by non‐redundant functions of GalNAc‐T1 and GalNAc‐T2. The non‐redundant O‐glycoproteome subsets and specific transcriptional responses for each isoform are related to different cellular processes; for the GalNAc‐T2 isoform, these support a role in lipid metabolism. The results demonstrate that GalNAc‐Ts have different non‐redundant glycosylation functions, which may affect distinct cellular processes. The data serves as a comprehensive resource for unique GalNAc‐T substrates. Our study provides a new view of the differential regulation of the O‐glycoproteome, suggesting that the plurality of GalNAc‐Ts arose to regulate distinct protein functions and cellular processes.


Molecular & Cellular Proteomics | 2015

Probing the O-glycoproteome of Gastric Cancer Cell Lines for Biomarker Discovery

Diana Campos; Daniela Freitas; Joana Gomes; Ana Magalhães; Catharina Steentoft; Catarina Gomes; Malene Bech Vester-Christensen; José Alexandre Ferreira; Luís Pedro Afonso; Lúcio Lara Santos; João Pinto de Sousa; Ulla Mandel; Henrik Clausen; Sergey Y. Vakhrushev; Celso A. Reis

Circulating O-glycoproteins shed from cancer cells represent important serum biomarkers for diagnostic and prognostic purposes. We have recently shown that selective detection of cancer-associated aberrant glycoforms of circulating O-glycoprotein biomarkers can increase specificity of cancer biomarker assays. However, the current knowledge of secreted and circulating O-glycoproteins is limited. Here, we used the COSMC KO “SimpleCell” (SC) strategy to characterize the O-glycoproteome of two gastric cancer SimpleCell lines (AGS, MKN45) as well as a gastric cell line (KATO III) which naturally expresses at least partially truncated O-glycans. Overall, we identified 499 O-glycoproteins and 1236 O-glycosites in gastric cancer SimpleCells, and a total 47 O-glycoproteins and 73 O-glycosites in the KATO III cell line. We next modified the glycoproteomic strategy to apply it to pools of sera from gastric cancer and healthy individuals to identify circulating O-glycoproteins with the STn glycoform. We identified 37 O-glycoproteins in the pool of cancer sera, and only nine of these were also found in sera from healthy individuals. Two identified candidate O-glycoprotein biomarkers (CD44 and GalNAc-T5) circulating with the STn glycoform were further validated as being expressed in gastric cancer tissue. A proximity ligation assay was used to show that CD44 was expressed with the STn glycoform in gastric cancer tissues. The study provides a discovery strategy for aberrantly glycosylated O-glycoproteins and a set of O-glycoprotein candidates with biomarker potential in gastric cancer.


Molecular & Cellular Proteomics | 2014

The GalNAc-type O-Glycoproteome of CHO Cells Characterized by the SimpleCell Strategy

Zhang Yang; Adnan Halim; Yoshiki Narimatsu; Hiren J. Joshi; Catharina Steentoft; Katrine T. Schjoldager; Morten Alder Schulz; Natalie Sealover; Kevin J. Kayser; Eric P. Bennett; Steven B. Levery; Sergey Y. Vakhrushev; Henrik Clausen

The Chinese hamster ovary cell (CHO) is the major host cell factory for recombinant production of biological therapeutics primarily because of its “human-like” glycosylation features. CHO is used for production of several O-glycoprotein therapeutics including erythropoietin, coagulation factors, and chimeric receptor IgG1-Fc-fusion proteins, however, some O-glycoproteins are not produced efficiently in CHO. We have previously shown that the capacity for O-glycosylation of proteins can be one limiting parameter for production of active proteins in CHO. Although the capacity of CHO for biosynthesis of glycan structures (glycostructures) on glycoproteins are well established, our knowledge of the capacity of CHO cells for attaching GalNAc-type O-glycans to proteins (glycosites) is minimal. This type of O-glycosylation is one of the most abundant forms of glycosylation, and it is differentially regulated in cells by expression of a subset of homologous polypeptide GalNAc-transferases. Here, we have genetically engineered CHO cells to produce homogeneous truncated O-glycans, so-called SimpleCells, which enabled lectin enrichment of O-glycoproteins and characterization of the O-glycoproteome. We identified 738 O-glycoproteins (1548 O-glycosites) in cell lysates and secretomes providing the first comprehensive insight into the O-glycosylation capacity of CHO (http://glycomics.ku.dk/o-glycoproteome_db/).

Collaboration


Dive into the Sergey Y. Vakhrushev's collaboration.

Top Co-Authors

Avatar

Henrik Clausen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiren J. Joshi

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adnan Halim

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulla Mandel

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge