Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catharina Steentoft is active.

Publication


Featured researches published by Catharina Steentoft.


The EMBO Journal | 2013

Precision mapping of the human O‐GalNAc glycoproteome through SimpleCell technology

Catharina Steentoft; Sergey Y. Vakhrushev; Hiren J. Joshi; Yun Kong; Malene Bech Vester-Christensen; Katrine T-B G Schjoldager; Kirstine Lavrsen; Sally Dabelsteen; Nis Borbye Pedersen; Lara Marcos-Silva; Ramneek Gupta; Eric P. Bennett; Ulla Mandel; Søren Brunak; Hans H. Wandall; Steven B. Levery; Henrik Clausen

Glycosylation is the most abundant and diverse posttranslational modification of proteins. While several types of glycosylation can be predicted by the protein sequence context, and substantial knowledge of these glycoproteomes is available, our knowledge of the GalNAc‐type O‐glycosylation is highly limited. This type of glycosylation is unique in being regulated by 20 polypeptide GalNAc‐transferases attaching the initiating GalNAc monosaccharides to Ser and Thr (and likely some Tyr) residues. We have developed a genetic engineering approach using human cell lines to simplify O‐glycosylation (SimpleCells) that enables proteome‐wide discovery of O‐glycan sites using ‘bottom‐up’ ETD‐based mass spectrometric analysis. We implemented this on 12 human cell lines from different organs, and present a first map of the human O‐glycoproteome with almost 3000 glycosites in over 600 O‐glycoproteins as well as an improved NetOGlyc4.0 model for prediction of O‐glycosylation. The finding of unique subsets of O‐glycoproteins in each cell line provides evidence that the O‐glycoproteome is differentially regulated and dynamic. The greatly expanded view of the O‐glycoproteome should facilitate the exploration of how site‐specific O‐glycosylation regulates protein function.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Immature truncated O-glycophenotype of cancer directly induces oncogenic features

Prakash Radhakrishnan; Sally Dabelsteen; Frey Brus Madsen; Chiara Francavilla; Katharina L. Kopp; Catharina Steentoft; Sergey Y. Vakhrushev; J. Olsen; Lars Kai Hansen; Eric P. Bennett; Anders Woetmann; Guangliang Yin; Longyun Chen; Haiyan Song; Mads Bak; Ryan A. Hlady; Staci L. Peters; Rene Opavsky; Christenze Thode; Klaus Qvortrup; Katrine T. Schjoldager; Henrik Clausen; Michael A. Hollingsworth; Hans H. Wandall

Significance Cancer cells characteristically express proteins with immature O-glycosylation, but how and why cancer cells express immature O-glycans has remained poorly understood. Here, we report that one prevalent mechanism in pancreatic cancer is epigenetic silencing, rather than somatic mutations in a key chaperone, core 1 β3-Gal-T-specific molecular chaperone (COSMC), required for mature elongated O-glycosylation. We also demonstrate, with the use of well-defined cell systems generated by precise gene editing, that the aberrant O-glycophenotype by itself induces oncogenic features with enhanced growth and invasion. Our study suggests that the characteristic aberrant O-glycophenotype is critical for the development and behavior of cancer and further provides support for immunotherapeutic strategies that target aberrant O-glycans. Aberrant expression of immature truncated O-glycans is a characteristic feature observed on virtually all epithelial cancer cells, and a very high frequency is observed in early epithelial premalignant lesions that precede the development of adenocarcinomas. Expression of the truncated O-glycan structures Tn and sialyl-Tn is strongly associated with poor prognosis and overall low survival. The genetic and biosynthetic mechanisms leading to accumulation of truncated O-glycans are not fully understood and include mutation or dysregulation of glycosyltransferases involved in elongation of O-glycans, as well as relocation of glycosyltransferases controlling initiation of O-glycosylation from Golgi to endoplasmic reticulum. Truncated O-glycans have been proposed to play functional roles for cancer-cell invasiveness, but our understanding of the biological functions of aberrant glycosylation in cancer is still highly limited. Here, we used exome sequencing of most glycosyltransferases in a large series of primary and metastatic pancreatic cancers to rule out somatic mutations as a cause of expression of truncated O-glycans. Instead, we found hypermethylation of core 1 β3-Gal-T-specific molecular chaperone, a key chaperone for O-glycan elongation, as the most prevalent cause. We next used gene editing to produce isogenic cell systems with and without homogenous truncated O-glycans that enabled, to our knowledge, the first polyomic and side-by-side evaluation of the cancer O-glycophenotype in an organotypic tissue model and in xenografts. The results strongly suggest that truncation of O-glycans directly induces oncogenic features of cell growth and invasion. The study provides support for targeting cancer-specific truncated O-glycans with immunotherapeutic measures.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Mining the O-mannose glycoproteome reveals cadherins as major O-mannosylated glycoproteins

Malene Bech Vester-Christensen; Adnan Halim; Hiren J. Joshi; Catharina Steentoft; Eric P. Bennett; Steven B. Levery; Sergey Y. Vakhrushev; Henrik Clausen

Significance Protein O-mannosylation is believed to be an abundant modification of proteins, but only very few glycoproteins with O-mannose have been identified to date. Here, we present a unique strategy for proteome-wide discovery of O-mannosylated glycoproteins, and using this strategy we find that the important cadherin and plexin families of cell membrane receptors are O-mannosylated. The presented strategy invites the opportunity for wider exploration of the O-mannose glycoproteome and studies of the functions of O-mannose glycans. The metazoan O-mannose (O-Man) glycoproteome is largely unknown. It has been shown that up to 30% of brain O-glycans are of the O-Man type, but essentially only alpha-dystroglycan (α-DG) of the dystrophin–glycoprotein complex is well characterized as an O-Man glycoprotein. Defects in O-Man glycosylation underlie congenital muscular dystrophies and considerable efforts have been devoted to explore this O-glycoproteome without much success. Here, we used our SimpleCell strategy using nuclease-mediated gene editing of a human cell line (MDA-MB-231) to reduce the structural heterogeneity of O-Man glycans and to probe the O-Man glycoproteome. In this breast cancer cell line we found that O-Man glycosylation is primarily found on cadherins and plexins on β-strands in extracellular cadherin and Ig-like, plexin and transcription factor domains. The positions and evolutionary conservation of O-Man glycans in cadherins suggest that they play important functional roles for this large group of cell adhesion glycoproteins, which can now be addressed. The developed O-Man SimpleCell strategy is applicable to most types of cell lines and enables proteome-wide discovery of O-Man protein glycosylation.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness

David J. Gill; Keit Min Tham; Joanne Chia; Shyi Chyi Wang; Catharina Steentoft; Henrik Clausen; Emilie A. Bard-Chapeau; Frederic Bard

Significance How cancer cells become invasive is key to understanding malignancy. Perturbations in O-glycosylation are strongly correlated with invasiveness. Here we report that tumor cells display relocation of O-glycosylation initiating glycosyltransferases from the Golgi apparatus to the endoplasmic reticulum (ER). ER-located O-glycosylation stimulates cell migration and invasiveness, which depend on cell surface O-glycoproteins. Inhibition of the glycosyltransferases in the ER reduces tissue invasion and metastasis formation in mice. Our study suggests that control of glycosylation via the subcellular localization of glycosyltransferases is a critical mechanism driving invasiveness in tumor cells. Invasiveness underlies cancer aggressiveness and is a hallmark of malignancy. Most malignant tumors have elevated levels of Tn, an O-GalNAc glycan. Mechanisms underlying Tn up-regulation and its effects remain unclear. Here we show that Golgi-to-endoplasmic reticulum relocation of polypeptide N-acetylgalactosamine-transferases (GalNAc-Ts) drives high Tn levels in cancer cell lines and in 70% of malignant breast tumors. This process stimulates cell adhesion to the extracellular matrix, as well as migration and invasiveness. The GalNAc-Ts lectin domain, mediating high-density glycosylation, is critical for these effects. Interfering with the lectin domain function inhibited carcinoma cell migration in vitro and metastatic potential in mice. We also show that stimulation of cell migration is dependent on Tn-bearing proteins present in lamellipodia of migrating cells. Our findings suggest that relocation of GalNAc-Ts to the endoplasmic reticulum frequently occurs upon cancerous transformation to enhance tumor cell migration and invasiveness through modification of cell surface proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Probing isoform-specific functions of polypeptide GalNAc-transferases using zinc finger nuclease glycoengineered SimpleCells

Katrine T. Schjoldager; Sergey Y. Vakhrushev; Yun Kong; Catharina Steentoft; Aaron S. Nudelman; Nis Borbye Pedersen; Hans H. Wandall; Ulla Mandel; Eric P. Bennett; Steven B. Levery; Henrik Clausen

Our knowledge of the O-glycoproteome [N-acetylgalactosamine (GalNAc) type] is highly limited. The O-glycoproteome is differentially regulated in cells by dynamic expression of a subset of 20 polypeptide GalNAc-transferases (GalNAc-Ts), and methods to identify important functions of individual GalNAc-Ts are largely unavailable. We recently introduced SimpleCells, i.e., human cell lines made deficient in O-glycan extension by zinc finger nuclease targeting of a key gene in O-glycan elongation (Cosmc), which allows for proteome-wide discovery of O-glycoproteins. Here we have extended the SimpleCell concept to include proteome-wide discovery of unique functions of individual GalNAc-Ts. We used the GalNAc-T2 isoform implicated in dyslipidemia and the human HepG2 liver cell line to demonstrate unique functions of this isoform. We confirm that GalNAc-T2–directed site-specific O-glycosylation inhibits proprotein activation of the lipase inhibitor ANGPTL3 in HepG2 cells and further identify eight O-glycoproteins exclusively glycosylated by T2 of which one, ApoC-III, is implicated in dyslipidemia. Our study supports an essential role for GalNAc-T2 in lipid metabolism, provides serum biomarkers for GalNAc-T2 enzyme function, and validates the use of GALNT gene targeting with SimpleCells for broad discovery of disease-causing deficiencies in O-glycosylation. The presented glycoengineering strategy opens the way for proteome-wide discovery of functions of GalNAc-T isoforms and their role in congenital diseases and disorders.


Journal of Proteome Research | 2013

Microarray Glycoprofiling of CA125 Improves Differential Diagnosis of Ovarian Cancer

Kowa Chen; Aleksandra Gentry-Maharaj; Matthew Burnell; Catharina Steentoft; Lara Marcos-Silva; Ulla Mandel; Ian Jacobs; Anne Dawnay; Usha Menon; Ola Blixt

The CA125 biomarker assay plays an important role in the diagnosis and management of primary invasive epithelial ovarian/tubal cancer (iEOC). However, a fundamental problem with CA125 is that it is not cancer-specific and may be elevated in benign gynecological conditions such as benign ovarian neoplasms and endometriosis. Aberrant O-glycosylation is an inherent and specific property of cancer cells and could potentially aid in differentiating cancer from these benign conditions, thereby improving specificity of the assay. We report on the development of a novel microarray-based platform for profiling specific aberrant glycoforms, such as Neu5Acα2,6GalNAc (STn) and GalNAc (Tn), present on CA125 (MUC16) and CA15-3 (MUC1). In a blinded cohort study of patients with an elevated CA125 levels (30-500 kU/L) and a pelvic mass from the UK Ovarian Cancer Population Study (UKOPS), we measured STn-CA125, ST-CA125 and STn-CA15-3. The combined glycoform profile was able to distinguish benign ovarian neoplasms from invasive epithelial ovarian/tubule cancer (iEOCs) with a specificity of 61.1% at 90% sensitivity. The findings suggest that microarray glycoprofiling could improve differential diagnosis and significantly reduce the number of patients elected for further testing. The approach warrants further investigation in other cancers.


Molecular & Cellular Proteomics | 2013

Enhanced Mass Spectrometric Mapping of the Human GalNAc-type O-Glycoproteome with SimpleCells

Sergey Y. Vakhrushev; Catharina Steentoft; Malene Bech Vester-Christensen; Eric P. Bennett; Henrik Clausen; Steven B. Levery

Characterizing protein GalNAc-type O-glycosylation has long been a major challenge, and as a result, our understanding of this glycoproteome is particularly poor. Recently, we presented a novel strategy for high throughput identification of O-GalNAc glycosites using zinc finger nuclease gene-engineered “SimpleCell” lines producing homogeneous truncated O-glycosylation. Total lysates of cells were trypsinized and subjected to lectin affinity chromatography enrichment, followed by identification of GalNAc O-glycopeptides by nLC-MS/MS, with electron transfer dissociation employed to specify sites of O-glycosylation. Here, we demonstrate a substantial improvement in the SimpleCell strategy by including an additional stage of lectin affinity chromatography on secreted glycoproteins from culture media (secretome) and by incorporating pre-fractionation of affinity-enriched glycopeptides via IEF before nLC-MS/MS. We applied these improvements to three human SimpleCells studied previously, and each yielded a substantial increase in the number of O-glycoproteins and O-glycosites identified. We found that analysis of the secretome was an important independent factor for increasing identifications, suggesting that further substantial improvements can also be sought through analysis of subcellular organelle fractions. In addition, we uncovered a substantial nonoverlapping set of O-glycoproteins and O-glycosites using an alternative protease digestion (chymotrypsin). In total, the improvements led to identification of 259 glycoproteins, of which 152 (59%) were novel compared with our previous strategy using the same three cell lines. With respect to individual glycosites, we identified a total of 856 sites, of which 508 (59%) were novel compared with our previous strategy; this includes four new identifications of O-GalNAc attached to tyrosine. Furthermore, we uncovered ∼220 O-glycosites wherein the peptides were clearly identified, but the glycosites could not be unambiguously assigned to specific positions. The improved strategy should greatly facilitate high throughput characterization of the human GalNAc-type O-glycoproteome as well as be applicable to analysis of other O-glycoproteomes.


Biochimica et Biophysica Acta | 2015

Advances in mass spectrometry driven O-glycoproteomics

Steven B. Levery; Catharina Steentoft; Adnan Halim; Yoshiki Narimatsu; Henrik Clausen; Sergey Y. Vakhrushev

BACKGROUND Global analyses of proteins and their modifications by mass spectrometry are essential tools in cell biology and biomedical research. Analyses of glycoproteins represent particular challenges and we are only at the beginnings of the glycoproteomic era. Some of the challenges have been overcome with N-glycoproteins and proteome-wide analysis of N-glycosylation sites is accomplishable today but only by sacrificing information of structures at individual glycosites. More recently advances in analysis of O-glycoproteins have been made and proteome-wide analysis of O-glycosylation sites is becoming available as well. SCOPE OF REVIEW Here we discuss the challenges of analysis of O-glycans and new O-glycoproteomics strategies focusing on O-GalNAc and O-Man glycoproteomes. MAJOR CONCLUSIONS A variety of strategies are now available for proteome-wide analysis of O-glycosylation sites enabling functional studies. However, further developments are still needed for complete analysis of glycan structures at individual sites for both N- and O-glycoproteomics strategies. GENERAL SIGNIFICANCE The advances in O-glycoproteomics have led to identification of new biological functions of O-glycosylation and a new understanding of the importance of where O-glycans are positioned on proteins.


Nucleic Acids Research | 2015

Fast and sensitive detection of indels induced by precise gene targeting

Zhang Yang; Catharina Steentoft; Camilla Hauge; Lars Kai Hansen; Allan Lind Thomsen; Francesco Niola; Malene Bech Vester-Christensen; Morten Frödin; Henrik Clausen; Hans H. Wandall; Eric P. Bennett

The nuclease-based gene editing tools are rapidly transforming capabilities for altering the genome of cells and organisms with great precision and in high throughput studies. A major limitation in application of precise gene editing lies in lack of sensitive and fast methods to detect and characterize the induced DNA changes. Precise gene editing induces double-stranded DNA breaks that are repaired by error-prone non-homologous end joining leading to introduction of insertions and deletions (indels) at the target site. These indels are often small and difficult and laborious to detect by traditional methods. Here we present a method for fast, sensitive and simple indel detection that accurately defines indel sizes down to ±1 bp. The method coined IDAA for Indel Detection by Amplicon Analysis is based on tri-primer amplicon labelling and DNA capillary electrophoresis detection, and IDAA is amenable for high throughput analysis.


Molecular & Cellular Proteomics | 2015

Probing the O-glycoproteome of Gastric Cancer Cell Lines for Biomarker Discovery

Diana Campos; Daniela Freitas; Joana Gomes; Ana Magalhães; Catharina Steentoft; Catarina Gomes; Malene Bech Vester-Christensen; José Alexandre Ferreira; Luís Pedro Afonso; Lúcio Lara Santos; João Pinto de Sousa; Ulla Mandel; Henrik Clausen; Sergey Y. Vakhrushev; Celso A. Reis

Circulating O-glycoproteins shed from cancer cells represent important serum biomarkers for diagnostic and prognostic purposes. We have recently shown that selective detection of cancer-associated aberrant glycoforms of circulating O-glycoprotein biomarkers can increase specificity of cancer biomarker assays. However, the current knowledge of secreted and circulating O-glycoproteins is limited. Here, we used the COSMC KO “SimpleCell” (SC) strategy to characterize the O-glycoproteome of two gastric cancer SimpleCell lines (AGS, MKN45) as well as a gastric cell line (KATO III) which naturally expresses at least partially truncated O-glycans. Overall, we identified 499 O-glycoproteins and 1236 O-glycosites in gastric cancer SimpleCells, and a total 47 O-glycoproteins and 73 O-glycosites in the KATO III cell line. We next modified the glycoproteomic strategy to apply it to pools of sera from gastric cancer and healthy individuals to identify circulating O-glycoproteins with the STn glycoform. We identified 37 O-glycoproteins in the pool of cancer sera, and only nine of these were also found in sera from healthy individuals. Two identified candidate O-glycoprotein biomarkers (CD44 and GalNAc-T5) circulating with the STn glycoform were further validated as being expressed in gastric cancer tissue. A proximity ligation assay was used to show that CD44 was expressed with the STn glycoform in gastric cancer tissues. The study provides a discovery strategy for aberrantly glycosylated O-glycoproteins and a set of O-glycoprotein candidates with biomarker potential in gastric cancer.

Collaboration


Dive into the Catharina Steentoft's collaboration.

Top Co-Authors

Avatar

Henrik Clausen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulla Mandel

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adnan Halim

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Hiren J. Joshi

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge