Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergio Roa is active.

Publication


Featured researches published by Sergio Roa.


Annual Review of Immunology | 2008

The Biochemistry of Somatic Hypermutation

Jonathan U. Peled; Fei Li Kuang; Maria D. Iglesias-Ussel; Sergio Roa; Susan L. Kalis; Myron F. Goodman; Matthew D. Scharff

Affinity maturation of the humoral response is mediated by somatic hypermutation of the immunoglobulin (Ig) genes and selection of higher-affinity B cell clones. Activation-induced cytidine deaminase (AID) is the first of a complex series of proteins that introduce these point mutations into variable regions of the Ig genes. AID deaminates deoxycytidine residues in single-stranded DNA to deoxyuridines, which are then processed by DNA replication, base excision repair (BER), or mismatch repair (MMR). In germinal center B cells, MMR, BER, and other factors are diverted from their normal roles in preserving genomic integrity to increase diversity within the Ig locus. Both AID and these components of an emerging error-prone mutasome are regulated on many levels by complex mechanisms that are only beginning to be elucidated.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Ubiquitylated PCNA plays a role in somatic hypermutation and class-switch recombination and is required for meiotic progression

Sergio Roa; Elena Avdievich; Jonathan U. Peled; Thomas MacCarthy; Uwe Werling; Fei Li Kuang; Rui Kan; Chunfang Zhao; Aviv Bergman; Paula E. Cohen; Winfried Edelmann; Matthew D. Scharff

Somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes are dependent upon activation-induced cytidine deaminase (AID)-induced mutations. The scaffolding properties of proliferating cell nuclear antigen (PCNA) and ubiquitylation of its residue K164 have been suggested to play an important role organizing the error-prone repair events that contribute to the AID-induced diversification of the Ig locus. We generated knockout mice for PCNA (Pcna−/−), which were embryonic lethal. Expression of PCNA with the K164R mutation rescued the lethal phenotype, but the mice (Pcna−/−tgK164R) displayed a meiotic defect in early pachynema and were sterile. B cells proliferated normally in Pcna−/−tgK164R mice, but a PCNA-K164R mutation resulted in impaired ex vivo CSR to IgG1 and IgG3, which was associated with reduced mutation frequency at the switch regions and a bias toward blunt junctions. Analysis of the heavy chain V186.2 region after NP-immunization showed in Pcna−/−tgK164R mice a significant reduction in the mutation frequency of A:T residues in WA motifs preferred by polymerase-η (Polη), and a strand-biased increase in the mutation frequency of G residues, preferentially in the context of AID-targeted GYW motifs. The phenotype of Pcna−/−tgK164R mice supports the idea that ubiquitylation of PCNA participates directly in the meiotic process and the diversification of the Ig locus through class-switch recombination (CSR) and somatic hypermutation (SHM).


Proceedings of the National Academy of Sciences of the United States of America | 2010

The RNF8/RNF168 ubiquitin ligase cascade facilitates class switch recombination

Richard Chahwan; Rajeev M. Nepal; Darina Frieder; Stephanie Panier; Sergio Roa; Ahmad Zaheen; Daniel Durocher; Matthew D. Scharff; Alberto Martin

An effective immune response requires B cells to produce several classes of antibodies through the process of class switch recombination (CSR). Activation-induced cytidine deaminase initiates CSR by deaminating deoxycytidines at switch regions within the Ig locus. This activity leads to double-stranded DNA break formation at the donor and recipient switch regions that are subsequently synapsed and ligated in a 53BP1-dependent process that remains poorly understood. The DNA damage response E3 ubiquitin ligases RNF8 and RNF168 were recently shown to facilitate recruitment of 53BP1 to sites of DNA damage. Here we show that the ubiquitination pathway mediated by RNF8 and RNF168 plays an integral part in CSR. Using the CH12F3-2 mouse B cell line that undergoes CSR to IgA at high rates, we demonstrate that knockdown of RNF8, RNF168, and 53BP1 leads to a significant decrease in CSR. We also show that 53BP1-deficient CH12F3-2 cells are protected from apoptosis mediated by the MDM2 inhibitor Nutlin-3. In contrast, deficiency in either E3 ubiquitin ligase does not protect cells from Nutlin-3–mediated apoptosis, indicating that RNF8 and RNF168 do not regulate all functions of 53BP1.


Seminars in Immunology | 2012

AIDing antibody diversity by error-prone mismatch repair.

Richard Chahwan; Winfried Edelmann; Matthew D. Scharff; Sergio Roa

The creation of a highly diverse antibody repertoire requires the synergistic activity of a DNA mutator, known as activation-induced deaminase (AID), coupled with an error-prone repair process that recognizes the DNA mismatch catalyzed by AID. Instead of facilitating the canonical error-free response, which generally occurs throughout the genome, DNA mismatch repair (MMR) participates in an error-prone repair mode that promotes A:T mutagenesis and double-strand breaks at the immunoglobulin (Ig) genes. As such, MMR is capable of compounding the mutation frequency of AID activity as well as broadening the spectrum of base mutations; thereby increasing the efficiency of antibody maturation. We here review the current understanding of this MMR-mediated process and describe how the MMR signaling cascade downstream of AID diverges in a locus dependent manner and even within the Ig locus itself to differentially promote somatic hypermutation (SHM) and class switch recombination (CSR) in B cells.


Leukemia | 2004

Quantitative analysis of bcl-2 expression in normal and leukemic human B-cell differentiation

Pablo Menendez; A Vargas; Clara Bueno; Susana Barrena; Julia Almeida; M de Santiago; A. López; Sergio Roa; J. F. San Miguel; Alberto Orfao

Lack of apoptosis has been linked to prolonged survival of malignant B cells expressing bcl-2. The aim of the present study was to analyze the amount of bcl-2 protein expressed along normal human B-cell maturation and to establish the frequency of aberrant bcl-2 expression in B-cell malignancies. In normal bone marrow (n=11), bcl-2 expression obtained by quantitative multiparametric flow cytometry was highly variable: very low in both CD34+ and CD34− B-cell precursors, high in mature B-lymphocytes and very high in plasma cells. Bcl-2 expression of mature B-lymphocytes from peripheral blood (n=10), spleen (n=8) and lymph node (n=5) was significantly higher (P<0.02) in CD23− as compared to CD23+ B cells, independent of the type of tissue analyzed. Upon comparison with normal human B-cell maturation, bcl-2 expression in neoplastic B cells from 144 patients was found to be aberrant in 66% of the cases, usually corresponding to bcl-2 overexpression (63%). Follicular lymphoma (FL) carrying t(14;18) and MALT lymphoma were the only diagnostic groups constantly showing overexpression of bcl-2. Bcl-2 overexpression was also frequently found in precursor B-acute lymphoblastic leukemia (84%), typical (77%) and atypical (75%) B-cell chronic lymphocytic leukemia, prolymphocytic leukemia (two of three cases), mantle cell lymphoma (55%), but not in t(14;18)− FL, splenic marginal zone lymphoma, Burkitt lymphoma and multiple myeloma.


Proceedings of the National Academy of Sciences of the United States of America | 2010

PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance.

Johanna van Oers; Sergio Roa; Uwe Werling; Yiyong Liu; Jochen Genschel; Harry Hou; Rani S. Sellers; Paul Modrich; Matthew D. Scharff; Winfried Edelmann

The DNA mismatch repair protein PMS2 was recently found to encode a novel endonuclease activity. To determine the biological functions of this activity in mammals, we generated endonuclease-deficient Pms2E702K knock-in mice. Pms2EK/EK mice displayed increased genomic mutation rates and a strong cancer predisposition. In addition, class switch recombination, but not somatic hypermutation, was impaired in Pms2EK/EK B cells, indicating a specific role in Ig diversity. In contrast to Pms2−/− mice, Pms2EK/EK male mice were fertile, indicating that this activity is dispensable in spermatogenesis. Therefore, the PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance and tumor suppression.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Mammalian Exo1 encodes both structural and catalytic functions that play distinct roles in essential biological processes.

Sonja Schaetzlein; Richard Chahwan; Elena Avdievich; Sergio Roa; Kaichun Wei; Robert L. Eoff; Rani S. Sellers; Alan B. Clark; Thomas A. Kunkel; Matthew D. Scharff; Winfried Edelmann

Significance Exonuclease1 (EXO1) is involved in a variety of DNA repair pathways and is implicated in multiple biological processes. To determine the contribution of the enzymatic and structural functions of EXO1 in these processes, we compared mice with catalytically inactive EXO1-knockin and complete EXO1-knockout mutations. We found that the catalytic function of EXO1 is essential for the DNA damage response, double-strand break repair, chromosomal stability, and tumor suppression, whereas EXO1’s structural role alone is critical for mismatch repair, antibody diversification, and meiosis. Our study reveals differential requirements for both EXO1 functions in DNA repair and tumorigenesis in vivo. Mammalian Exonuclease 1 (EXO1) is an evolutionarily conserved, multifunctional exonuclease involved in DNA damage repair, replication, immunoglobulin diversity, meiosis, and telomere maintenance. It has been assumed that EXO1 participates in these processes primarily through its exonuclease activity, but recent studies also suggest that EXO1 has a structural function in the assembly of higher-order protein complexes. To dissect the enzymatic and nonenzymatic roles of EXO1 in the different biological processes in vivo, we generated an EXO1-E109K knockin (Exo1EK) mouse expressing a stable exonuclease-deficient protein and, for comparison, a fully EXO1-deficient (Exo1null) mouse. In contrast to Exo1null/null mice, Exo1EK/EK mice retained mismatch repair activity and displayed normal class switch recombination and meiosis. However, both Exo1-mutant lines showed defects in DNA damage response including DNA double-strand break repair (DSBR) through DNA end resection, chromosomal stability, and tumor suppression, indicating that the enzymatic function is required for those processes. On a transformation-related protein 53 (Trp53)-null background, the DSBR defect caused by the E109K mutation altered the tumor spectrum but did not affect the overall survival as compared with p53-Exo1null mice, whose defects in both DSBR and mismatch repair also compromised survival. The separation of these functions demonstrates the differential requirement for the structural function and nuclease activity of mammalian EXO1 in distinct DNA repair processes and tumorigenesis in vivo.


Blood | 2013

Downregulation of FOXP1 is required during germinal center B-cell function.

Ainara Sagardoy; Jose I. Martinez-Ferrandis; Sergio Roa; Karen L. Bunting; María Ángela Aznar; Olivier Elemento; Rita Shaknovich; Lorena Fontan; Vicente Fresquet; Ignacio Perez-Roger; Eloy F. Robles; Linde De Smedt; Xavier Sagaert; Ari Melnick; Jose A. Martinez-Climent

B-cell maturation and germinal center (GC) formation are dependent on the interplay between BCL6 and other transcriptional regulators. FOXP1 is a transcription factor that regulates early B-cell development, but whether it plays a role in mature B cells is unknown. Analysis of human tonsillar B-cell subpopulations revealed that FOXP1 shows the opposite expression pattern to BCL6, suggesting that FOXP1 regulates the transition from resting follicular B cell to activated GC B cell. Chromatin immunoprecipitation-on-chip and gene expression assays on B cells indicated that FOXP1 acts as a transcriptional activator and repressor of genes involved in the GC reaction, half of which are also BCL6 targets. To study FOXP1 function in vivo, we developed transgenic mice expressing human FOXP1 in lymphoid cells. These mice exhibited irregular formation of splenic GCs, showing a modest increase in naïve and marginal-zone B cells and a significant decrease in GC B cells. Furthermore, aberrant expression of FOXP1 impaired transcription of noncoding γ1 germline transcripts and inhibited efficient class switching to the immunoglobulin G1 isotype. These studies show that FOXP1 is physiologically downregulated in GC B cells and that aberrant expression of FOXP1 impairs mechanisms triggered by B-cell activation, potentially contributing to B-cell lymphomagenesis.


Blood | 2012

IGHV-unmutated and IGHV-mutated chronic lymphocytic leukemia cells produce activation-induced deaminase protein with a full range of biologic functions

Piers E.M. Patten; Charles C. Chu; Emilia Albesiano; Rajendra N. Damle; Xiao Jie Yan; Dorothy Kim; Lu Zhang; Amanda R. Magli; Jacqueline Barrientos; Jonathan E. Kolitz; Steven L. Allen; Kanti R. Rai; Sergio Roa; Patricia K. A. Mongini; Thomas MacCarthy; Matthew D. Scharff; Nicholas Chiorazzi

Clonal evolution occurs during the course of chronic lymphocytic leukemia (CLL) and activation-induced deaminase (AID) could influence this process. However, this possibility has been questioned in CLL because the number of circulating AID mRNA(+) cells is exceedingly low; synthesis of AID protein by blood CLL cells has not been demonstrated; the full range of AID functions is lacking in unmutated CLL (U-CLL), and no prospective analysis linking AID expression and disease severity has been reported. The results of the present study show that circulating CLL cells and those within secondary lymphoid tissues can make AID mRNA and protein. This production is related to cell division because more AID mRNA was detected in recently divided cells and AID protein was limited to the dividing fraction and was up-regulated on induction of cell division. AID protein was functional because AID(+) dividing cells exhibited more double-stranded DNA breaks, IGH class switching, and new IGHV-D-J mutations. Each of these actions was documented in U-CLL and mutated CLL (M-CLL). Furthermore, AID protein was associated with worse patient outcome and adverse cytogenetics. We conclude that the production of fully functional AID protein by U-CLL and M-CLL cells could be involved in clonal evolution of the disease.


DNA Repair | 2009

SHMTool: a webserver for comparative analysis of somatic hypermutation datasets.

Thomas MacCarthy; Sergio Roa; Matthew D. Scharff; Aviv Bergman

The somatic hypermutation (SHM) of Immunoglobulin variable (V) regions is a key process in the generation of antibody diversity. The growing number of datasets of point mutations that occur during SHM in mice and humans often include comparisons between wild-type and individuals or strains genetically defective in the repair mechanisms that contribute to SHM. However, it has been difficult to compare the results of different studies because the analyses have not been standardized for criteria such as correction for base composition and the inclusion of unique mutations. If many mutations are involved, the analysis can also be time consuming. To overcome these problems and facilitate a standardized analysis and display of similar data, we present a webserver (SHMTool) for comparing SHM datasets, available at http://scb.aecom.yu.edu/shmtool.

Collaboration


Dive into the Sergio Roa's collaboration.

Top Co-Authors

Avatar

Matthew D. Scharff

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Winfried Edelmann

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge