Seth B. Harkins
California Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Seth B. Harkins.
Journal of the American Chemical Society | 2010
Joseph C. Deaton; Steven C. Switalski; Denis Y. Kondakov; Ralph H. Young; Thomas D. Pawlik; David J. Giesen; Seth B. Harkins; Alexander J. M. Miller; Seth F. Mickenberg; Jonas C. Peters
A highly emissive bis(phosphine)diarylamido dinuclear copper(I) complex (quantum yield = 57%) was shown to exhibit E-type delayed fluorescence by variable temperature emission spectroscopy and photoluminescence decay measurement of doped vapor-deposited films. The lowest energy singlet and triplet excited states were assigned as charge transfer states on the basis of theoretical calculations and the small observed S(1)-T(1) energy gap. Vapor-deposited OLEDs doped with the complex in the emissive layer gave a maximum external quantum efficiency of 16.1%, demonstrating that triplet excitons can be harvested very efficiently through the delayed fluorescence channel. The function of the emissive dopant in OLEDs was further probed by several physical methods, including electrically detected EPR, cyclic voltammetry, and photoluminescence in the presence of applied current.
Journal of the American Chemical Society | 2008
Zsolt Csok; Oleg Vechorkin; Seth B. Harkins; Rosario Scopelliti; Xile Hu
A new pincer-type bis(amino)amine (NN2) ligand and its lithium and nickel complexes, including Ni(II) methyl, ethyl, and phenyl complexes, were synthesized. The Ni(II) alkyl complexes react cleanly with alkyl halides including chlorides to form C-C coupled products and Ni(II) halides. More interestingly, the Ni(II) alkyls undergo unprecedented reactions with CH2Cl2 and CHCl3 to cleave all the C-Cl bonds and replace them with C-C bonds. The reactions are highly selective and lead to the first efficient catalytic coupling of CH2Cl2 with alkyl Grignards. A conversion of 82% and a turnover number of 47 are achieved within minutes. Coupling of CD2Cl2 and 1,1-dichloro-3,3-dimethylbutane with nBuMgCl is also realized. Preliminary mechanistic study suggests a radical initiated process for these reactions.
Journal of the American Chemical Society | 2008
Seth B. Harkins; Neal P. Mankad; Alexander J. M. Miller; Robert K. Szilagyi; Jonas C. Peters
A series of dicopper diamond core complexes that can be isolated in three different oxidation states ([Cu2(mu-XR2)]n+, where n = 0, 1, 2 and X = N or P) is described. Of particular interest is the relative degree of oxidation of the respective copper centers and the bridging XR2 units, upon successive oxidations. These dicopper complexes feature terminal phosphine and either bridging amido or phosphido donors, and as such their metal-ligand bonds are highly covalent. Cu K-edge, Cu L-edge, and P K-edge spectroscopies, in combination with solid-state X-ray structures and DFT calculations, provides a complementary electronic structure picture for the entire set of complexes that tracks the involvement of a majority of ligand-based redox chemistry. The electronic structure picture that emerges for these inorganic dicopper diamond cores shares similarities with the Cu2(mu-SR)2 CuA sites of cytochrome c oxidases and nitrous oxide reductases.
Inorganic Chemistry | 2009
Neal P. Mankad; Seth B. Harkins; William E. Antholine; Jonas C. Peters
Multifrequency electron paramagnetic resonance (EPR) spectroscopy is used to explore the electronic structures of a series of dicopper complexes of the type {(LXL)Cu}(2)(+). These complexes contain two four-coordinate copper centers of highly distorted tetrahedral geometries linked by two [LXL](-) ligands featuring bridging amido or phosphido ligands and associated thioether or phosphine chelate donors. Specific chelating [LXL](-) ligands examined in this study include bis(2-tert-butylsulfanylphenyl)amide (SNS), bis(2-di-iso-butylphosphinophenyl)amide (PNP), and bis(2-di-iso-propylphosphinophenyl)phosphide (PPP). To better map the electronic coupling to copper, nitrogen, and phosphorus in these complexes, X-, S-, and Q-band EPR spectra have been obtained for each complex. The resulting EPR parameters implied by computer simulation are unusual for typical dicopper complexes and are largely consistent with previously published X-ray absorption spectroscopy and density functional theory data, where a highly covalent {Cu(2)(mu-XR(2))(2)}(+) diamond core has been assigned in which removal of an electron from the neutral {Cu(2)(mu-XR(2))(2)} can be viewed as ligand-centered to a substantial degree. To our knowledge, this is the first family of dicopper diamond core model complexes for which the compendium of X-, S-, and Q-band EPR spectra have been collected for comparison to Cu(A).
Journal of the American Chemical Society | 2005
Seth B. Harkins; Jonas C. Peters
Journal of the American Chemical Society | 2001
Cecily Andes; Seth B. Harkins; Shahid Murtuza; and Karl Oyler; Ayusman Sen
Inorganic Chemistry | 2001
Jonas C. Peters; Seth B. Harkins; Steven D. Brown; Michael W. Day
Journal of the American Chemical Society | 2005
Neal P. Mankad; Eric Rivard; Seth B. Harkins; Jonas C. Peters
Journal of the American Chemical Society | 2004
Seth B. Harkins; Jonas C. Peters
Organometallics | 2002
Seth B. Harkins; Jonas C. Peters