Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theodore A. Betley is active.

Publication


Featured researches published by Theodore A. Betley.


Inorganic Chemistry | 2008

Electronic Design Criteria for O−O Bond Formation via Metal−Oxo Complexes

Theodore A. Betley; Qin Wu; Troy Van Voorhis; Daniel G. Nocera

Metal-oxos are critical intermediates for the management of oxygen and its activation. The reactivity of the metal-oxo is central to the formation of O-O bonds, which is the essential step for oxygen generation. Two basic strategies for the formation of O-O bonds at metal-oxo active sites are presented. The acid-base (AB) strategy involves the attack of a nucleophilic oxygen species (e.g., hydroxide) on an electrophilic metal-oxo. Here, active-site designs must incorporate the assembly of a hydroxide (or water) proximate to a high-valent metal-oxo of even d electron count. For the radical coupling (RC) strategy, two high-valent metal-oxos of an odd d electron count are needed to drive O-O coupling. This Forum Article focuses on the different electronic structures of terminal metal-oxos that support AB and RC strategies and the design of ligand scaffolds that engender these electronic structures.


Science | 2013

Complex N-Heterocycle Synthesis via Iron-Catalyzed, Direct C–H Bond Amination

Elisabeth Therese Hennessy; Theodore A. Betley

Closing the Cycle Cyclic hydrocarbons that incorporate nitrogen in the ring are among the most heavily investigated compounds in medicinal chemistry. Hennessy and Betley (p. 591) demonstrate an iron catalyst that forms a range of such cyclic compounds by inducing linear alkyl azides to curl back on themselves, inserting the nitrogen at one end into a carbon-hydrogen bond further down the chain. The reaction furthers a trend of C-H bond activation chemistry that forms elaborate products from relatively simple precursors, without the need to install activating groups at unreactive sites. An iron catalyst facilitates carbon–nitrogen bond formation in previously unreactive substrates. The manipulation of traditionally unreactive functional groups is of paramount importance in modern chemical synthesis. We have developed an iron-dipyrrinato catalyst that leverages the reactivity of iron-borne metal-ligand multiple bonds to promote the direct amination of aliphatic C–H bonds. Exposure of organic azides to the iron dipyrrinato catalyst furnishes saturated, cyclic amine products (N-heterocycles) bearing complex core-substitution patterns. This study highlights the development of C–H bond functionalization chemistry for the formation of saturated, cyclic amine products and should find broad application in the context of both pharmaceuticals and natural product synthesis.


Journal of the American Chemical Society | 2011

Catalytic C―H Bond Amination from High-Spin Iron Imido Complexes

Evan R. King; Elisabeth Therese Hennessy; Theodore A. Betley

Dipyrromethene ligand scaffolds were synthesized bearing large aryl (2,4,6-Ph(3)C(6)H(2), abbreviated Ar) or alkyl ((t)Bu, adamantyl) flanking groups to afford three new disubstituted ligands ((R)L, 1,9-R(2)-5-mesityldipyrromethene, R=aryl, alkyl). While high-spin (S=2), four-coordinate iron complexes of the type ((R)L)FeCl(solv) were obtained with the alkyl-substituted ligand varieties (for R=(t)Bu, Ad and solv=THF, OEt(2)), use of the sterically encumbered aryl-substituted ligand precluded binding of solvent and cleanly afforded a high-spin (S=2), three-coordinate complex of the type ((Ar)L)FeCl. Reaction of ((Ad)L)FeCl(OEt(2)) with alkyl azides resulted in the catalytic amination of C-H bonds or olefin aziridination at room temperature. Using a 5% catalyst loading, 12 turnovers were obtained for the amination of toluene as a substrate, while greater than 85% of alkyl azide was converted to the corresponding aziridine employing styrene as a substrate. A primary kinetic isotope effect of 12.8(5) was obtained for the reaction of ((Ad)L)FeCl(OEt(2)) with adamantyl azide in an equimolar toluene/toluene-d(8) mixture, consistent with the amination proceeding through a hydrogen atom abstraction, radical rebound type mechanism. Reaction of p-(t)BuC(6)H(4)N(3) with ((Ar)L)FeCl permitted isolation of a high-spin (S=2) iron complex featuring a terminal imido ligand, ((Ar)L)FeCl(N(p-(t)BuC(6)H(4))), as determined by (1)H NMR, X-ray crystallography, and (57)Fe Mössbauer spectroscopy. The measured Fe-N(imide) bond distance (1.768(2) Å) is the longest reported for Fe(imido) complexes in any geometry or spin state, and the disruption of the bond metrics within the imido aryl substituent suggests delocalization of a radical throughout the aryl ring. Zero-field (57)Fe Mössbauer parameters obtained for ((Ar)L)FeCl(N(p-(t)BuC(6)H(4))) suggest a Fe(III) formulation and are nearly identical with those observed for a structurally similar, high-spin Fe(III) complex bearing the same dipyrromethene framework. Theoretical analyses of ((Ar)L)FeCl(N(p-(t)BuC(6)H(4))) suggest a formulation for this reactive species to be a high-spin Fe(III) center antiferromagnetically coupled to an imido-based radical (J = -673 cm(-1)). The terminal imido complex was effective for delivering the nitrene moiety to both C-H bond substrates (42% yield) as well as styrene (76% yield). Furthermore, a primary kinetic isotope effect of 24(3) was obtained for the reaction of ((Ar)L)FeCl(N(p-(t)BuC(6)H(4))) with an equimolar toluene/toluene-d(8) mixture, consistent with the values obtained in the catalytic reaction. This commonality suggests the isolated high-spin Fe(III) imido radical is a viable intermediate in the catalytic reaction pathway. Given the breadth of iron imido complexes spanning several oxidation states (Fe(II)-Fe(V)) and several spin states (S=0→(3)/(2)), we propose the unusual electronic structure of the described high-spin iron imido complexes contributes to the observed catalytic reactivity.


Inorganic Chemistry | 2009

C−H Bond Amination from a Ferrous Dipyrromethene Complex

Evan R. King; Theodore A. Betley

In this Communication, we report an intramolecular C-H bond amination reaction of a dipyrromethene ferrous complex with organic azides. Monitoring of the spectral changes (variable-temperature NMR and UV-vis) of the Fe(II) complex reveals no buildup of an intermediate during conversion of the starting material into the nitrene-inserted product. The rate-determining step appears to be azide addition to the 14-electron Fe(II) complex, hinting at the potential that these and related platforms may have to effect atom- and group-transfer processes.


Journal of the American Chemical Society | 2012

Co(III) Imidos Exhibiting Spin Crossover and C-H Bond Activation

Evan R. King; Graham T. Sazama; Theodore A. Betley

The reaction of ((Ar)L)Co(py) with (t)BuN(3) afforded the isolable three-coordinate Co-imido complex ((Ar)L)Co(N(t)Bu), which is paramagnetic at room temperature. Variable-temperature (VT) (1)H NMR spectroscopy, VT crystallography, and magnetic susceptibility measurements revealed that ((Ar)L)Co(N(t)Bu) undergoes a thermally induced spin crossover from an S = 0 ground state to a quintet (S = 2) state. The reaction of ((Ar)L)Co(py) with mesityl azide yielded an isolable S = 1 terminal imido complex that was converted into the metallacycloindoline ((Ar)L)Co(κ(2)-NHC(6)H(2)-2,4-Me(2)-6-CH(2)) via benzylic C-H activation.


Philosophical Transactions of the Royal Society B | 2008

A ligand field chemistry of oxygen generation by the oxygen-evolving complex and synthetic active sites.

Theodore A. Betley; Yogesh Surendranath; Montana V Childress; Glen E. Alliger; Ross Fu; Christopher C. Cummins; Daniel G. Nocera

Oxygen–oxygen bond formation and O2 generation occur from the S4 state of the oxygen-evolving complex (OEC). Several mechanistic possibilities have been proposed for water oxidation, depending on the formal oxidation state of the Mn atoms. All fall under two general classifications: the AB mechanism in which nucleophilic oxygen (base, B) attacks electrophilic oxygen (acid, A) of the Mn4Ca cluster or the RC mechanism in which radical-like oxygen species couple within OEC. The critical intermediate in either mechanism involves a metal oxo, though the nature of this oxo for AB and RC mechanisms is disparate. In the case of the AB mechanism, assembly of an even-electron count, high-valent metal-oxo proximate to a hydroxide is needed whereas, in an RC mechanism, two odd-electron count, high-valent metal oxos are required. Thus the two mechanisms give rise to very different design criteria for functional models of the OEC active site. This discussion presents the electron counts and ligand geometries that support metal oxos for AB and RC O–O bond-forming reactions. The construction of architectures that bring two oxygen functionalities together under the purview of the AB and RC scenarios are described.


Chemical Science | 2014

Iron-mediated intermolecular N-group transfer chemistry with olefinic substrates

Elisabeth Therese Hennessy; Richard Y. Liu; Diana A. Iovan; Ryan A. Duncan; Theodore A. Betley

The dipyrrinato iron catalyst reacts with organic azides to generate a reactive, high-spin imido radical intermediate, distinct from nitrenoid or imido species commonly observed with low-spin transition metal complexes. The unique electronic structure of the putative group-transfer intermediate dictates the chemoselectivity for intermolecular nitrene transfer. The mechanism of nitrene group transfer was probed via amination and aziridination of para-substituted toluene and styrene substrates, respectively. The Hammett analysis of both catalytic amination and aziridination reactions indicate the rate of nitrene transfer is enhanced with functional groups capable of delocalizing spin. Intermolecular amination reactions with olefinic substrates bearing allylic C–H bonds give rise to exclusive allylic amination with no apparent aziridination products. Amination of substrates containing terminal olefins give rise exclusively to allylic C–H bond abstraction, C–N recombination occurring at the terminal C with transposition of the double bond. A similar reaction is observed with cis-β-methylstyrene where exclusive amination of the allylic position is observed with isomerization of the olefin to the trans-configuration. The high levels of chemoselectivity are attributed to the high-spin electronic configuration of the reactive imido radical intermediate, while the steric demands of the ligand enforce regioselective amination at the terminal position of linear α-olefins.


Journal of the American Chemical Society | 2013

Testing the Polynuclear Hypothesis: Multielectron Reduction of Small Molecules by Triiron Reaction Sites

Tamara M. Powers; Theodore A. Betley

High-spin trinuclear iron complex ((tbs)L)Fe3(thf) ([(tbs)L](6-) = [1,3,5-C6H9(NC6H4-o-NSi(t)BuMe2)3](6-)) (S = 6) facilitates 2 and 4e(-) reduction of NxHy type substrates to yield imido and nitrido products. Reaction of hydrazine or phenylhydrazine with ((tbs)L)Fe3(thf) yields triiron μ(3)-imido cluster ((tbs)L)Fe3(μ(3)-NH) and ammonia or aniline, respectively. ((tbs)L)Fe3(μ(3)-NH) has a similar zero-field (57)Fe Mössbauer spectrum compared to previously reported [((tbs)L)Fe3(μ(3)-N)]NBu4, and can be directly synthesized by protonation of the anionic triiron nitrido with lutidinium tetraphenylborate. Deprotonation of the triiron parent imido ((tbs)L)Fe3(μ(3)-NH) with lithium bis(trimethylsilyl)amide results in regeneration of the triiron nitrido complex capped with a thf-solvated Li cation [((tbs)L)Fe3(μ(3)-N)]Li(thf)3. The lithium capped nitrido, structurally similar to the pseudo C3-symmetric triiron nitride with a tetrabutylammonium countercation, is rigorously C3-symmetric featuring intracore distances of Fe-Fe 2.4802(5) Å, Fe-N(nitride) 1.877(2) Å, and N(nitride)-Li 1.990(6) Å. A similar 2e(-) reduction of 1,2-diphenylhydrazine by ((tbs)L)Fe3(thf) affords ((tbs)L)Fe3(μ(3)-NPh) and aniline. The solid state structure of ((tbs)L)Fe3(μ(3)-NPh) is similar to the series of μ(3)-nitrido and -imido triiron complexes synthesized in this work with average Fe-Nimido and Fe-Fe bond lengths of 1.941(6) and 2.530(1) Å, respectively. Reductive N═N bond cleavage of azobenzene is also achieved in the presence of ((tbs)L)Fe3(thf) to yield triiron bis-imido complex ((tbs)L)Fe3(μ(3)-NPh)(μ(2)-NPh), which has been structurally characterized. Ligand redox participation has been ruled out, and therefore, charge balance indicates that the bis-imido cluster has undergone a 4e(-) metal based oxidation resulting in an (Fe(IV))(Fe(III))2 formulation. Cyclic voltammograms of the series of triiron clusters presented herein demonstrate that oxidation states up to (Fe(IV))(Fe(III))2 (in the case of [((tbs)L)Fe3(μ(3)-N)]NBu4) are electrochemically accessible. These results highlight the efficacy of high-spin, polynuclear reaction sites to cooperatively mediate small molecule activation.


Journal of the American Chemical Society | 2011

Oxidative group transfer to a triiron complex to form a nucleophilic μ3-nitride, [Fe3(μ3-N)]-

Tamara M. Powers; Alison R. Fout; Shao Liang Zheng; Theodore A. Betley

Utilizing a hexadentate ligand platform, a high-spin trinuclear iron complex of the type ((tbs)L)Fe(3)(thf) was synthesized and characterized ([(tbs)L](6-) = [1,3,5-C(6)H(9)(NPh-o-NSi(t)BuMe(2))(3)](6-)). The silyl-amide groups only permit ligation of one solvent molecule to the tri-iron core, resulting in an asymmetric core wherein each iron ion exhibits a distinct local coordination environment. The triiron complex ((tbs)L)Fe(3)(thf) rapidly consumes inorganic azide ([N(3)]NBu(4)) to afford an anionic, trinuclear nitride complex [((tbs)L)Fe(3)(μ(3)-N)]NBu(4). The nearly C(3)-symmetric complex exhibits a highly pyramidalized nitride ligand that resides 1.205(3) Å above the mean triiron plane with short Fe-N (1.871(3) Å) distances and Fe-Fe separation (2.480(1) Å). The nucleophilic nitride can be readily alkylated via reaction with methyl iodide to afford the neutral, trinuclear methylimide complex ((tbs)L)Fe(3)(μ(3)-NCH(3)). Alkylation of the nitride maintains the approximate C(3)-symmetry in the imide complex, where the imide ligand resides 1.265(9) Å above the mean triiron plane featuring lengthened Fe-N(imide) bond distances (1.892(3) Å) with nearly equal Fe-Fe separation (2.483(1) Å).


Journal of the American Chemical Society | 2016

Characterization of Iron-Imido Species Relevant for N-Group Transfer Chemistry

Diana A. Iovan; Theodore A. Betley

A sterically accessible tert-butyl-substituted dipyrrinato di-iron(II) complex [((tBu)L)FeCl]2 possessing two bridging chloride atoms was synthesized from the previously reported solvento adduct. Upon treatment with aryl azides, the formation of high-spin Fe(III) species was confirmed by (57)Fe Mössbauer spectroscopy. Crystallographic characterization revealed two possible oxidation products: (1) a terminal iron iminyl from aryl azides bearing ortho isopropyl substituents, ((tBu)L)FeCl((•)NC6H3-2,6-(i)Pr2); or (2) a bridging di-iron imido arising from reaction with 3,5-bis(trifluoromethyl)aryl azide, [((tBu)L)FeCl]2(μ-NC6H3-3,5-(CF3)2). Similar to the previously reported ((Ar)L)FeCl((•)NC6H4-4-(t)Bu), the monomeric iron imido is best described as a high-spin Fe(III) antiferromagnetically coupled to an iminyl radical, affording an S = 2 spin state as confirmed by SQUID magnetometry. The di-iron imido possesses an S = 0 ground state, arising from two high-spin Fe(III) centers weakly antiferromagnetically coupled through the bridging imido ligand. The terminal iron iminyl complex undergoes facile decomposition via intra- or intermolecular hydrogen-atom abstraction (HAA) from an imido aryl ortho isopropyl group, or from 1,4-cyclohexadiene, respectively. The bridging di-iron imido is a competent N-group transfer reagent to cyclic internal olefins as well as styrene. Although solid-state magnetometry indicates an antiferromagnetic interaction between the two iron centers (J = -108.7 cm(-1)) in [((tBu)L)FeCl]2(μ-NC6H3-3,5-(CF3)2), we demonstrate that in solution the bridging imido can facilitate HAA as well as dissociate into a terminal iminyl species, which then can promote HAA. In situ monitoring reveals the di-iron bridging imido is a catalytically competent intermediate, one of several iron complexes observed in the amination of C-H bond substrates or styrene aziridination.

Collaboration


Dive into the Theodore A. Betley's collaboration.

Top Co-Authors

Avatar

Jonas C. Peters

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Christopher Thomas

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven D. Brown

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seth B. Harkins

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge