Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seul Kee Byeon is active.

Publication


Featured researches published by Seul Kee Byeon.


Journal of Chromatography A | 2014

Rapid and simple extraction of lipids from blood plasma and urine for liquid chromatography-tandem mass spectrometry

Dae Young Bang; Seul Kee Byeon; Myeong Hee Moon

A simple and fast lipid extraction method from human blood plasma and urine is introduced in this study. The effective lipid extraction from biological systems with a minimization of the matrix effect is important for the successful qualitative and quantitative analysis of lipids in liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). The method described here is based on the modification of the quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction method, which was originally developed for pesticide residue analysis in food, for the purpose of isolating lipids from biological fluids. Applicability of QuEChERS method for lipids was evaluated by varying organic solvents for the extraction/partitioning of lipids in MgSO4/CH3COONa for the removal of water and by varying sorbents (primary secondary amines, graphitized carbon black, silica, strong anion exchange resins and C18 particles) for the dispersive solid-phase extraction (dSPE) step. This study shows that 2:1 (v/v) CHCl3/CH3OH is effective in the extraction/partitioning step and that 50mg of C18 particles (for 0.1mL plasma and 1mL of urine) are more suitable for sample cleanup for the dSPE step of the QuEChERS method. Matrix effects were calculated by comparing the recovery values of lipid standards spiked to both plasma and urine samples after extraction with those of the same standards in a neat solution using nanoflow LC-ESI-MS/MS, resulting in improved MS signals due to the decrease of the ion suppression compared to the conventional Folch method. The modified QuEChERS method was applied to lipid extracts from both human urine and plasma samples, demonstrating that it can be powerfully utilized for high-speed (<15min) preparation of lipids compared to the Folch method, with equivalent or slightly improved results in lipid identification using nLC-ESI-MS/MS.


Journal of Chromatography A | 2015

Lipidomic profiling of plasma and urine from patients with Gaucher disease during enzyme replacement therapy by nanoflow liquid chromatography–tandem mass spectrometry

Seul Kee Byeon; Ju Yong Lee; Jin Sung Lee; Myeong Hee Moon

Gaucher disease (GD) is a rare genetic disorder that arises from lipid species, especially monohexosylceramide (MHC), accumulating in different organs. GD results from a β-glucocerebrosidase deficiency, causing metabolic or neurologic complications. This study comprehensively profiled lipids from patients and healthy controls to discover active lipid species related to GD. Most studies have evaluated lipids from one type of biological sample, such as plasma, urine, or spinal fluid, which are the main sources of lipids in human bodies. The purpose of this study, however, was to collect and assess both plasma and urine samples from a group of individuals, explore the lipids, and select characteristic species that show significant differences between controls and patients from the two sources. Also, the response of lipids to enzyme replacement therapy (ERT), which is targeted to reduce excessive lipid accumulation within lysosomes, was investigated by obtaining plasma and urine from patients after receiving the therapy. Most lipid species were found in both plasma and urine but their concentrations differed, and some species were found in either plasma or urine only. Out of 125 plasma and 105 urinary lipids that were identified by nLC-ESI-MS/MS, 20 plasma and 10 urinary lipids were selected as characteristic species for having average concentrations that were significantly increased or decreased in patients by greater than 2-fold. Moreover, the concentrations of most lipids that showed greater than 2-fold of difference in patients decreased after ERT indicating that these species were directly or indirectly affected by the therapy.


Analytical Chemistry | 2015

Toward Full Spectrum Speciation of Silver Nanoparticles and Ionic Silver by On-Line Coupling of Hollow Fiber Flow Field-Flow Fractionation and Minicolumn Concentration with Multiple Detectors

Zhi Qiang Tan; Jing Fu Liu; Xiao Ru Guo; Yong Guang Yin; Seul Kee Byeon; Myeong Hee Moon; Gui Bin Jiang

The intertransformation of silver nanoparticles (AgNPs) and ionic silver (Ag(I)) in the environment determines their transport, uptake, and toxicity, demanding methods to simultaneously separate and quantify AgNPs and Ag(I). For the first time, hollow fiber flow field-flow fractionation (HF5) and minicolumn concentration were on-line coupled together with multiple detectors (including UV-vis spectrometry, dynamic light scattering, and inductively coupled plasma mass spectrometry) for full spectrum separation, characterization, and quantification of various Ag(I) species (i.e., free Ag(I), weak and strong Ag(I) complexes) and differently sized AgNPs. While HF5 was employed for filtration and fractionation of AgNPs (>2 nm), the minicolumn packed with Amberlite IR120 resin functioned to trap free Ag(I) or weak Ag(I) complexes coming from the radial flow of HF5 together with the strong Ag(I) complexes and tiny AgNPs (<2 nm), which were further discriminated in a second run of focusing by oxidizing >90% of tiny AgNPs to free Ag(I) and trapped in the minicolumn. The excellent performance was verified by the good agreement of the characterization results of AgNPs determined by this method with that by transmission electron microscopy, and the satisfactory recoveries (70.7-108%) for seven Ag species, including Ag(I), the adduct of Ag(I) and cysteine, and five AgNPs with nominal diameters of 1.4 nm, 10 nm, 20 nm, 40 nm, and 60 nm in surface water samples.


Journal of Mass Spectrometry | 2012

Computational approach to structural identification of phospholipids using raw mass spectra from nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry.

Sangsoo Lim; Seul Kee Byeon; Ju Yong Lee; Myeong Hee Moon

A qualitative analysis tool (LiPilot) for identifying phospholipids (PLs), including lysophospholipids (LPLs), from biological mixtures is introduced. The developed algorithm utilizes raw data obtained from nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry experiments of lipid mixture samples including retention time and m/z values of precursor and fragment ions from data-dependent, collision-induced dissociation. Library files based on typical fragmentation patterns of PLs generated with an LTQ-Velos ion trap mass spectrometer are used to identify PL or LPL species by comparing experimental fragment ions with typical fragment ions in the library file. Identification is aided by calculating a confidence score developed in our laboratory to maximize identification efficiency. Analysis includes the influence of total ion intensities of matched and unmatched fragment ions, the difference in m/z values between observed and theoretical fragment ions, and a weighting factor used to differentiate regioisomers through data filtration. The present study focused on targeted identification of particular PL classes. The identification software was evaluated using a mixture of 24 PL and LPL standards. The software was further tested with a human urinary PL mixture sample, with 93 PLs and 22 LPLs identified.


Analytical Chemistry | 2015

Profiling of Oxidized Phospholipids in Lipoproteins from Patients with Coronary Artery Disease by Hollow Fiber Flow Field-Flow Fractionation and Nanoflow Liquid Chromatography–Tandem Mass Spectrometry

Ju Yong Lee; Seul Kee Byeon; Myeong Hee Moon

Oxidized phospholipids (Ox-PLs) are oxidatively modified PLs that are produced during the oxidation of lipoproteins; oxidation of low density lipoproteins especially is known to be associated with the development of coronary artery disease (CAD). In this study, different lipoprotein classes (high density, low density, and very low density lipoproteins) from pooled plasma of CAD patients and pooled plasma from healthy controls were size-sorted on a semipreparative scale by multiplexed hollow fiber flow field-flow fractionation (MxHF5), and Ox-PLs that were extracted from each lipoprotein fraction were quantified by nanoflow liquid chromatography-tandem mass spectrometry (nLC-ESI-MS/MS). The present study showed that oxidation of lipoproteins occurred throughout all classes of lipoproteins with more Ox-PLs identified from CAD patient lipoproteins: molecular structures of 283 unique PL species (including 123 Ox-PLs) from controls and 315 (including 169 Ox-PLs) from patients were identified by data-dependent collision-induced dissociation experiments. It was shown that oxidation of PLs occurred primarily with hydroxylation of PL; in particular, a saturated acyl chain such as 16:0, 18:0, or even 18:1 at the sn-1 location of the glycerol backbone along with sn-2 acyl chains with at least two double bonds were identified. The acyl chain combinations commonly found for hydroxylated Ox-PLs in the lipoproteins of CAD patients were 16:0/18:2, 16:0/20:4, 18:0/18:2, and 18:0/20:4.


Journal of Chromatography A | 2012

Discovery of candidate phospholipid biomarkers in human lipoproteins with coronary artery disease by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry.

Seul Kee Byeon; Ju Yong Lee; Sangsoo Lim; Donghoon Choi; Myeong Hee Moon

In this study, an analytical method is demonstrated to identify and develop potential phospholipid (PL) biomarkers of high density lipoprotein (HDL) and low density lipoprotein (LDL) in plasma from individuals with coronary artery disease (CAD) by employing a combination of off-line multiplexed hollow fiber flow field-flow fractionation (MxHF5) and nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nLC-ESI-MS-MS). HDL and LDL particles of human plasma were sorted by size at a semi-preparative scale using MxHF5, after which PL extracts of each lipoprotein fraction were qualitatively and quantitatively analyzed by nLC-ESI-MS-MS. Experiments were performed using plasma samples from 10 CAD patients and 10 controls. Quantitative analysis of the 93 PL species identified yielded a selection of 19 species from HDL fractions and 10 from LDL fractions exhibiting at least a five fold change in average concentration in CAD patients. Among the selected species, only a few were found exclusively in patient HDL fractions (18:3-LPA and 20:2/16:0-PG), control HDL fractions (16:0/16:1-PC, 20:1/20:4-PE, and 16:1-LPA), and control LDL fractions (16:0/22:3-PG). Moreover, 16:1/18:2-PC was detected from both HDL and LDL fractions of controls but disappeared in CAD patients. Although the typical change in lipoproteins for CAD is well known, with decreased levels of HDLs and reduced LDL particle size, the current study provides fundamental information on the molecular level of lipoprotein variation which can be utilized for diagnostic and therapeutic tracking.


Analytical Chemistry | 2017

Size Dependent Lipidomic Analysis of Urinary Exosomes from Patients with Prostate Cancer by Flow Field-Flow Fractionation and Nanoflow Liquid Chromatography-Tandem Mass Spectrometry

Joon Seon Yang; Jong Cheol Lee; Seul Kee Byeon; Koon Ho Rha; Myeong Hee Moon

Exosomes are membrane-bound extracellular vesicles involved in intercellular communication and tumor cell metastasis. In this study, flow field-flow fractionation (FlFFF) was utilized to separate urinary exosomes by size, demonstrating a significant difference in exosome sizes between healthy controls and patients with prostate cancer (PCa). Exosome fractions of different sizes were collected for microscopic analysis during an FlFFF run and evaluated with exosome marker proteins using Western blot analysis. The results indicated that exosomes of different sizes originated from different types of cells. Collected exosome fractions were further examined using nanoflow ultrahigh performance liquid chromatography-electrospray ionization-tandem mass spectrometry (nUPLC-ESI-MS/MS) for lipidomic analysis. A total of 162 lipids (from 286 identified) were quantified using a selected reaction monitoring (SRM) method. The overall amount of lipids increased by 1.5- to 2-fold in patients with PCa and degree of increase was more significant in the smaller fractions (diameter <150 nm) than in the larger ones (diameter >150 nm) some classes of lipids. In addition, neutral lipids like diacylglycerol (DAG) and triacylglycerol (TAG) decreased in all exosomes without size dependency. Moreover, a dramatic increase in 22:6/22:6-phosphatidylglycerol (PG) was observed and significant decrease in (16:0,16:0)- and (16:1, 18:1)-DAG species (nearly 5-fold) and high abundant TAG species (>2.5-fold) was observed in patients with PCa. The results of this study indicate that FlFFF can be employed for the high-speed screening of urinary exosome sizes in patients with PCa and lipidomic analysis of the fractionated exosomes has potential for developing and distinguishing biomarkers of PCa.


Scientific Reports | 2016

Evaluation of treadmill exercise effect on muscular lipid profiles of diabetic fatty rats by nanoflow liquid chromatography–tandem mass spectrometry

Jong Cheol Lee; Il Yong Kim; Yeri Son; Seul Kee Byeon; Dong Hyun Yoon; Jun Seok Son; Han Sol Song; Wook Song; Je Kyung Seong; Myeong Hee Moon

We compare comprehensive quantitative profiling of lipids at the molecular level from skeletal muscle tissues (gastrocnemius and soleus) of Zucker diabetic fatty rats and Zucker lean control rats during treadmill exercise by nanoflow liquid chromatography–tandem mass spectrometry. Because type II diabetes is caused by decreased insulin sensitivity due to excess lipids accumulated in skeletal muscle tissue, lipidomic analysis of muscle tissues under treadmill exercise can help unveil the mechanism of lipid-associated insulin resistance. In total, 314 lipid species, including phospholipids, sphingolipids, ceramides, diacylglycerols (DAGs), and triacylglycerols (TAGs), were analyzed to examine diabetes-related lipid species and responses to treadmill exercise. Most lysophospholipid levels increased with diabetes. While DAG levels (10 from the gastrocnemius and 13 from the soleus) were >3-fold higher in diabetic rats, levels of most of these decreased after exercise in soleus but not in gastrocnemius. Levels of 5 highly abundant TAGs (52:1 and 54:3 in the gastrocnemius and 48:2, 50:2, and 52:4 in the soleus) displaying 2-fold increases in diabetic rats decreased after exercise in the soleus but not in the gastrocnemius in most cases. Thus, aerobic exercise has a stronger influence on lipid levels in the soleus than in the gastrocnemius in type 2 diabetic rats.


Journal of Chromatography A | 2015

Top-down and bottom-up lipidomic analysis of rabbit lipoproteins under different metabolic conditions using flow field-flow fractionation, nanoflow liquid chromatography and mass spectrometry

Seul Kee Byeon; Jin Yong Kim; Ju Yong Lee; Bong Chul Chung; Hong Seog Seo; Myeong Hee Moon

This study demonstrated the performances of top-down and bottom-up approaches in lipidomic analysis of lipoproteins from rabbits raised under different metabolic conditions: healthy controls, carrageenan-induced inflammation, dehydration, high cholesterol (HC) diet, and highest cholesterol diet with inflammation (HCI). In the bottom-up approach, the high density lipoproteins (HDL) and the low density lipoproteins (LDL) were size-sorted and collected on a semi-preparative scale using a multiplexed hollow fiber flow field-flow fractionation (MxHF5), followed by nanoflow liquid chromatography-ESI-MS/MS (nLC-ESI-MS/MS) analysis of the lipids extracted from each lipoprotein fraction. In the top-down method, size-fractionated lipoproteins were directly infused to MS for quantitative analysis of targeted lipids using chip-type asymmetrical flow field-flow fractionation-electrospray ionization-tandem mass spectrometry (cAF4-ESI-MS/MS) in selected reaction monitoring (SRM) mode. The comprehensive bottom-up analysis yielded 122 and 104 lipids from HDL and LDL, respectively. Rabbits within the HC and HCI groups had lipid patterns that contrasted most substantially from those of controls, suggesting that HC diet significantly alters the lipid composition of lipoproteins. Among the identified lipids, 20 lipid species that exhibited large differences (>10-fold) were selected as targets for the top-down quantitative analysis in order to compare the results with those from the bottom-up method. Statistical comparison of the results from the two methods revealed that the results were not significantly different for most of the selected species, except for those species with only small differences in concentration between groups. The current study demonstrated that top-down lipid analysis using cAF4-ESI-MS/MS is a powerful high-speed analytical platform for targeted lipidomic analysis that does not require the extraction of lipids from blood samples.


Scientific Reports | 2017

Lipidomic analysis of skeletal muscle tissues of p53 knockout mice by nUPLC-ESI-MS/MS

Se Mi Park; Seul Kee Byeon; Hojun Lee; Hyerim Sung; Il Yong Kim; Je Kyung Seong; Myeong Hee Moon

Tumour suppressor p53 is known to be associated with the maintenance of mitochondrial functional properties in the skeletal muscles. As deactivation or mutation of p53 can affect the synthesis of lipids, investigating the relationship between p53-related energy generation metabolism and perturbation of lipid profile is critical. In this study, 329 lipid species (among 412 identified species) in two different skeletal muscle tissues (the gastrocnemius and soleus) from p53 knockout (KO) mice were quantitatively analysed using nanoflow ultrahigh performance liquid chromatography tandem mass spectrometry (nUPLC-MS/MS). Overall, lipids from the soleus tissues were more affected by p53 KO than those from the gastrocnemius in most lipid profiles. In p53 KO, lysophosphatidylcholine (LPC), lysophosphatidylserine (LPS), phosphatidic acid (PA), sphingomyelin (SM), and triacylglycerol (TAG), including 6 TAG (44:2, 46:0, 58:5, 58:8, 58:9, and 50:0), were significantly increased (p < 0.05) by 1.4–2-fold only in the soleus tissue. Overall monohexosylceramide (MHC) levels, including those of 3 MHC species (d18:0/24:0, d18:1/22:0, and d18:1/24:0), were significantly increased (p < 0.05) by 2–4 fold, only in the gastrocnemius tissue. The results suggest that lipid profiles are significantly altered by the lack of p53 in muscle tissues.

Collaboration


Dive into the Seul Kee Byeon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Il Yong Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bong Chul Chung

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Dong Hyun Yoon

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Han Sol Song

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge